Subsea cables: Powering a sustainable future
Renewable energies
13 June 2024
10 min
Sustainability by design for cables

Electrification, particularly from renewable sources, is playing a pivotal role in the world’s quest for net zero emissions. And as we move towards a more electrified future, it’s crucial to acknowledge the environmental impact of the very cables that power our lives.

The demand for subsea cables that can safely and efficiently carry the growing current is surging. As innovative technologies are reaching new heights in their ability to transmit sustainable energy at greater volumes, distances, and depths, ensuring their sustainability throughout their life cycle is equally important.

Let’s dive into the innovations in electrical transmission that are unquestionably promoting this shift.

Subsea cables: the need for a sustainable mindset

But first, there are two reasons why the question needs to be raised.

1. Cables’ components

The environmental footprint of the cables’ materials demands our attention. These are the obvious environmental costs it takes to electrify the future.

Above all, the conductor, which channels the electrical flow, is composed of copper or aluminum and constitutes a significant part of the overall GHG emissions of subsea cables. Much of this is due to the energy required in producing and purifying the metals, which is why it is essential to use renewable energy in the extraction process to reduce the environmental impact.

2. The importance of sustainability in a resource-constrained world

Did you know electrical wire and cable can contain up to 80% copper?

Known as ‘the metal of electrification,’ copper is paramount in the production of cables. The metal is excellent for conducting electricity efficiently: its unique properties allow for a smooth flow of electrons, which minimizes energy loss in transmission lines.

Yet, due to the growing focus on electrification, global copper demand is expected to reach 39 million tons in 2030 (compared with 13 million tons in 1995 and 29 million tons in 2020). And possibly, at the same time, it might become increasingly scarce. Furthermore: its excavation and mining come with its own social and environmental challenges. Co-existence with other industries such as fisheries as well as local communities which might be adversely affected by mining can limit access to potential resources.

Let’s now explore the solutions and innovations that are key to help us mitigate the environmental impact of subsea cables.

Recycling aluminium from cables

3 innovations for sustainable subsea cables

The future – moving to a sustainable mindset

Nexans positions itself at the forefront of this impetus. For example, the Group’s casting facilities in Canada, France, and Peru reused roughly 19,700 metric tons of copper scrap in 2022. In 2008, Nexans and Suez formed the joint venture RecyCâbles as a complete cable recycling solution. Since its inception, it has become a European leader for cable recycling and recovery.

Here are three concrete examples of current innovations that are leading the way:

SF₆ replacement and GIS terminations

Replacing SF₆ as insulating medium in cable terminations, with alternative insulating gases (such as GE’s g³) or with dry-type solutions, is critical. This would reduce the GWP, with more than 99 percent, in any event of accidental gas emission. Converter manufacturers are also currently developing switchgears using alternative gas to SF₆, so this gas can be substituted in the complete HVDC cable systems.

The advantage of using GIS terminations is twofold, because GIS terminations also allow a major reduction of space needed in the offshore converter stations, which leads to significant reduction of converter platform size, and consequently of steel used for its construction.

The OceanGrid Project

Innovative research initiatives are instrumental in seeking more sustainable and viable interconnectors. With the OceanGrid Project, research is being carried out on a new aluminum alloy aiming to advance the deployment of profitable offshore wind farms in Norway in 2030 – 2050.

Offshore wind farm with focus on subsea cables and copper

The AluGreen consortium

In the AluGreen consortium, Nexans leads the exploration of introducing end-of life conductor materials in new subsea cables. The consortium draws from the full aluminum value chain in Norway which sets the stage for piloting full circular business models.

 

The world is electrifying, and the cables that carry this energy surge need a sustainable upgrade.

Subsea cables are crucial for efficient transmission of renewable energy offshore. Yet, they can have a significant environmental footprint.

Traditional materials and production methods create challenges; however, innovation, from recycling to new technologies, is paving the way for a more sustainable future.

Audun Johanson

Authors

Audun Johanson is an R&D Project Manager & New Opportunities in Nexans’ Generation & Transmission Business Group, where he drives technology development for future energy transmission with a particular focus on floating wind and circularity.

He has joined Nexans 10 years ago with an educational background in material science from the Norwegian University of Science and Technology, Norway.

Nils-Bertil Frisk

Nils-Bertil Frisk is the Discipline Responsible for HVDC Extruded Accessories in Nexans’ Generation & Transmission Business Group, where he has the responsibility to develop, maintain and standardize HVDC Extruded cable accessory portfolio.

Nils-Bertil started in Nexans R&D department 10 years ago with a main focus on HVDC Extruded accessories.

Nils-Bertil has a Master’s degree in Electrical Power Engineering awarded from Chalmers University of Technology, Sweden.

Subsea interconnections for cross-border power
Renewable energies
10 June 2024
9 min
Subsea interconnections - Nexans Aurora

Imagine a giant sea serpent made of copper and steel, winding along at a depth of 3,000 meters under the sea. No, it’s not a mythical sea creature, it’s an interconnector cable!

You are no doubt already familiar with subsea fiber optic cables, the technology making it possible for you to read this article. Yet the underwater depths also host far larger cables, able to transmit electricity from one country to another.

What is an interconnector?

Routed under the sea, these high-voltage cables play the role of invisible highways, taking electricity from one country to another.

They measure up to 300 mm in diameter and can weigh up to 140 kg per meter… for a total weight of up to 9,000 metric tons! We’re talking here about gigantic structures that can weigh as much as the Eiffel Tower.

To imagine what’s inside, think of a big sushi: the cable body is made of copper and sometimes optical fiber, protected by an armor of thick steel.

Anatomy of a subsea cable
Anatomy of a subsea cable

These subsea cables are manufactured in ultra-modern plants, able to assemble the various components with millimetric precision. They are then transported on cable-laying vessels, which deploy them on the seabed.

This operation is a real technological feat, making it possible to transfer power across seas and oceans, in order to support the energy transition.

What are the advantages of subsea interconnectors?

Let’s just take a step back in time: the first interconnections between national power grids took place two decades after World War Two.

Today, Europe is the most advanced continent in terms of interconnections. Its highly sophisticated network relies in part on these subsea cables.

So, what are the advantages of these interconnections?

Virtuous circle of interconnections

A fast-growing interconnection market

It is no surprise to see the offshore wind and interconnection markets expanding at a rapid pace. Major investments will be needed wherever the level of interconnection remains insufficient.

Subsea cables are becoming an increasingly common choice, not only in America and Europe, but also elsewhere in the world. In September 2023, for example, the grid operators of Greece and Saudi Arabia signed a strategic agreement setting up ‘Saudi Greek Interconnection”, a joint venture to link their power grids.

Forecasts for the European interconnection market

By 2030

15%

of each European country’s electricity
production should be exportable under
a newly established system

97

interconnection projects implemented
in Europe, with 21
at the development stage

+72,000 km

of HV cables to be installed
between 2020 and 2030

No interconnections… without cable-laying vessels

Cable-laying vessels transport the cables and deploy them on the seabed. Measuring over 100m in length in some cases, these steel monsters are high-tech gems and a key component of the interconnection process.

A growing number of new-generation vessels are currently being developed to meet increasing demand for electrification, particularly in Europe and the US.

Among the most advanced cable-laying vessels is Aurora. Named after the Roman goddess of the dawn, this giant of the sea is 150m long. A truly exceptional vessel equipped with state-of-the-art technology, Nexans Aurora is capable of laying ultra-high-voltage subsea cables over thousands of kilometers and at abyssal depths. Its role is to connect offshore wind farms to onshore grids, and deliver the power generated by the wind to our homes.

Aurora is Nexans’ second cable-laying vessel. The Group is in the process of adding a third vessel to its fleet: Electra.

Electra in figures

2026

Launch

Design & comfort

Greater capacity

than Nexans Aurora

3

turntables

13,500

metric tons loading capacity

up to

4

cables can be laid at a time

A giant of the Mediterranean: The Great Sea Interconnector

Among the most impressive subsea interconnection projects is the Great Sea Interconnector project (formerly the EuroAsia Interconnector). This 2-gigawatt giant is set to become the world’s longest and deepest high-voltage direct current (HVDC) subsea cable. Measuring 900 kilometers in length, deployed at a depth of over 3,000 meters, it will link the coasts of Greece and Cyprus in a never-before-seen electrical embrace. The Great Sea Interconnector symbolizes a new era in energy interconnections. Whereas Cyprus was isolated from the European grid, it will be connected to a stable and diversified energy source, promoting the integration of renewable energies and reducing its dependence on fossil fuels. Nexans Group was tasked with manufacturing this subsea interconnector, the longest and deepest in the world. This is a challenge on an exceptional scale: building the Great Sea Interconnector required immense resources and exceptional logistics, allowed by Nexans’ ability to produce whole kilometers of cables in its ultra-modern plants, for shipping and deployment in the depths of the Mediterranean.

Interconnections map

So, in short… Subsea interconnection cables are invisible giants, energy highways winding along the seabed.

As such, they have a crucial role to play in the global energy transition: enabling the exchange of electricity between countries, promoting the integration of renewable energies, securing supplies and contributing to lower prices.

These cables represent both a technological feat and a colossal level of investment. Their development is part of an ongoing dynamic. Subsea cables are a key part of efforts to address climate change and to build a more sustainable energy future.

Deep sea grid interconnectors – the vital link between renewables and energy security
Renewable energies
30 May 2024
9 min
Deep sea grid interconnectors

Renewable sources of electricity become an increasing and exceedingly important factor in the energy equation. Global annual renewable capacity additions increased by almost 50% to nearly 510 gigawatts (GW) in 2023, the fastest growth rate in the past two decades, marking a major step forward in the reduction of fossil fuel power. Moving to renewable energy is vital to decreasing greenhouse gas emissions and aligning with the 1.5 Celsius climate target set in the Paris Agreement.

Even as renewable energy generated a record 30% of global electricity in 2023, furthering the growth of renewable energy relies heavily on grid interconnection.

Grid interconnection – the critical link to energy security

Interconnections provide the optimal way to ensure energy security across regions and continents:

  • When grids are interconnected, surplus energy from one region is easily transported- via the interconnected power grid – to where electricity is needed. This ensures energy security across the interconnected grids and avoids reliance on fossil fuels when renewable energy cannot meet local demand.
  • By equalizing demand and supply across interconnected grids, excess power is more readily available to areas with increased demand, thus ensuring energy price stability and future renewable investments.
  • The harnessing of electricity across grids goes beyond adjacent regions to include the interlinking of power grids across continents and islands and offshore renewable energy sources. Deep water, once a barrier to interlinking grids, is less of an issue thanks to innovations in cable design, new materials and alloys, and cable installation and maintenance advancements.

Cable-laying vessels, the high-tech gems of the interconnection process

A growing number of new-generation cable-laying vessels are currently being developed to meet the increasing demand for electrification and interconnections.

Among the most advanced ones is Nexans Aurora (and in the future Nexans Electra), a 150-meters long giant, equipped with state-of-the-art technology. It is capable of laying ultra-high-voltage subsea cables over hundreds of kilometers and at abyssal depths.

Thanks to those steel giants, interconnections allow us to overcome the reliance on fossil fuels. Here are four innovations in deepwater HV cables that are highly contributing to tackling this challenge.

4 innovations for subsea cables that are game-changing

1. Deep sea grid interconnections – from megawatts to gigawatts

The interconnection of grids is not only reaching impressive depths, but their capacity has also gone from hundreds of megawatts to gigawatts.

To date, the deepest installed HV cable system is the SaPeI interconnector, stretching 435 kilometers, linking Sardinia and mainland Italy, reaching 1,640 meters below sea level.

One revealing example of this revolution is the Tyrrhenian Links project, currently under construction. It will connect Sicily with Sardinia and the Italian peninsula. It will be installed at a record-breaking 2,200 meters deep, for a transmission capacity of 1,000 MW. Achieving this is possible thanks to advances in high-voltage direct current (HVDC) systems, which can transmit larger amounts of power over long distances.

If this technology is already available for shallow waters, engineering challenges arise when increasing the water depth.

2. Mass-Impregnated (MI) undersea cables – decades-long reliability track record

Mass-impregnated cables’ first commercial use was in 1954 for the Gotland HVDC Link to connect the Island of Gotland to mainland Sweden. Since then, mass-impregnated cables have been the primary choice for subsea HVDC interconnector projects requiring voltages surpassing 500 kV over long distances and extreme depths.

Simply put, a MI undersea cable is a type of HVDC cable specifically designed for underwater applications. Here is the breakdown:

  • Construction: it is made with layers of high-density paper tapes wrapped around the conductor. These tapes are then impregnated with a special, high-viscosity compound. This compound is key – it’s thick and doesn’t flow easily, even if the cable is damaged.
  • Application: it is used for transmitting large amounts of electrical power over long distances underwater. They are particularly useful for applications exceeding 500 kV DC and long distances.

MI cables offer three main advantages that make them innovative for undersea applications:

  1. Reliability: The high viscosity compound prevents leakage even if the cable is damaged, making it more reliable for underwater use compared to older designs.
  2. Durability: cables installed decades ago are still operational today, demonstrating their long lifespan.
  3. Depth capability: they can be used for extreme depths with proper design features.

Overall, MI cables are a well-established and trusted technology for transmitting large amounts of power underwater, making them a key innovation for subsea power transmission.

Breaking even new barriers to deep sea cable depths will be the Great Sea Interconnector project. Reaching depths of up to 3,000 meters in some areas, the project will connect Israel, Cyprus, and Greece via Crete. Stretching 900 kilometers from Crete to Cyprus, the 1,000-megawatt, bi-pole cable will bolster energy security and facilitate electricity exchange between the countries.

3. Overcoming subsea cable challenges – new design approaches

The main challenge in using MI technology in subsea cables however is the elongation of the insulation system during deployment and retrieval.

There are many ways this can be overcome. The most prominent is through cable design, conductors, materials, or installation methods.

Additionally, 500+ kV extruded cable designs are also being developed. A major advantage of extruded cable design is its ability to sustain greater elongation compared to MI cables. A challenge for extruded design is the need for effective water blocking in the conductor in the case of damage to the cable. At 3,000 meters below sea level, the pressure is so great that if the water is not blocked in the conductor, it can easily penetrate tens of kilometers into the cable, leading to costly repairs.

4. Monitoring and repairing subsea cables: a priority

Repairing and retrieving subsea cables at extreme water depths is a significant challenge. To avoid power outages and grid failure, contingency plans are crucial. Inspection, maintenance, and repair (IMR) agreements are vital to minimize failure risks through proactive inspection and maintenance, thus reducing incident response time.

Even as barriers to deep sea depths are reached, monitoring the health of subsea cables will increasingly be a vital part of ensuring the reliability of interconnected grids.

The future – interconnected grids driving renewable electrification

Nexans is deeply involved in the electrical transmission revolution that is going on.

In fact, the Group has been playing an essential role for a long time. In 1977, Nexans deployed its first HVDC MI cables for the Skagerrak subsea interconnector between Denmark and Norway. Almost 50 years later, the original cable system is still in use. Today, its expertise in building, installing, and repairing deep sea HVDC systems spans MI and extruded technologies.

Its most monumental undertaking is currently crafting the world’s longest and deepest subsea interconnection: The Great Sea Interconnector. This colossal project symbolizes a new era in energy interconnections and demanded immense resources and logistical mastery.

 

Innovation is the lifeblood of deep sea grids. For this sustainable future revolution to reach its full potential, robust and far-reaching interconnectivity is paramount. Deep sea grid interconnectors are the invisible threads weaving a global energy tapestry. Challenges remain, but solutions are on the horizon.

Deep sea grids are not simply cables on the ocean floor; they are the lifelines of a safer energy landscape. They are the physical manifestation of a global commitment to a sustainable future, a future powered by the boundless potential of renewable energy.

Robin Sangar

Author

Robin Sangar is an R&D Engineer in the Generation & Transmission Business Group in Nexans, working to challenge the status quo with novel solutions and bringing together people from across disciplines and the organization to solve problems.

Robin has held several positions in Nexans, from tender to project and now R&D.

Robin holds a Masters degree in Experimental Physics from the Norwegian University of Technology and Science, Trondheim.

5 innovations that will transform the electrical transmission industry
Renewable energies
23 May 2024
8 min
Subsea electrical transmission

Faster, higher, stronger – together is the motto of the Olympics, but it can also apply to the changes happening in the electricity transmission and distribution industry.

As decarbonization of energy takes on a heightened importance globally, it will take a unified approach to reach net zero by 2050. To do so will mean eliminating fossil fuel combustion and transforming power grids to accommodate intermittent renewable energy.

Rejuvenation of the grid that a decarbonized and electrified world needs differs significantly from the ones built post World War II and on which we still rely today. Modernization and newer storage technologies are crucial in decarbonizing electricity. But equally important are the connections of supply from one electric network to another to ensure energy reliability and stability and transition the world to renewables.

Thus, according to a report published by the International Energy Agency, the world must add or replace about 80 million km of grids by 2040, equal to all grids globally today, in order for countries to meet their climate goals and to achieve energy security priorities. Considering only offshore wind in Europe, 48 000 to 54 000 km of HV cable route length shall be added by 2050 to meet the offshore wind targets of the European countries, according to a ENTSO-E’s TYNDP report published in January 2024.

For decades, experts have discussed interconnections. However, two crucial factors are now driving their escalating importance: the increasing availability of renewables and the vulnerability of today’s network to climate change.

Grid interconnection—Boosting power reliability and stability, and reducing the reliance on fossil fuels

Put simply, an interconnection links a network of grids together at a synchronized frequency. This enables the transfer of surplus energy from areas with excess power to those with higher demand than they can meet locally. Harnessing electricity from a regional grid allows the local network to reduce the risks of power outages or failures, thereby boosting power reliability and stability.

In addition, interconnection links islands and continents to sources where renewable energy generation is more plentiful, thus progressively diminishing reliance on fossil fuels. Examples include the interconnection between Crete to Greece, Mallorca to Spain and Tasmania to Australia. This enables the development of renewable energy sources on these islands, freeing them from dependence on polluting power generation.

Here are five innovations that will make electrical transmission reach new heights.

Interconnections globally are instrumental in ensuring the viability of sustainable energy and reducing the reliance on fossil fuels. Achieving this requires a cutting-edge mindset in designing, manufacturing, and installing deep-sea cables that can transmit increasingly higher energy levels and that can realize interconnexions in previously impossible areas.

Moreover, innovation in electrical transmission is unquestionably linked to unerring monitoring as well as highly sustainable design.

From the engineering, manufacturing, construction, and installation of HVDC cables for connection systems, to the world’s first electrical Type Test with 320 kV HVDC cable termination using GE’s g³ gas to considerably lessen global warming potential, by way of the increasing amount of recycled metals used in cables: Nexans is at the forefront of these innovations.

In the coming weeks, we invite you to deep dive into these innovations that will revolutionize the electrical transmission industry.

Maxime Toulotte

Author

Maxime Toulotte is the Markets & New Solutions Director of Generation & Transmission Business Group in Nexans, where he has the responsibility to develop and maintain relations with technical and engineering departments of clients and partners for subsea high voltage cables.

Maxime has held several positions as Sales & Tender Manager and Lead Engineer for high voltage submarine cable system projects.

Maxime holds a Master’s degree in Electrical Engineering from the Grenoble Institute of Technology, France.

Digital Twins: Turning complexity into better decisions
Digital transformation
14 March 2024
9 min
digital twins

Modern transmission and distribution electrical grids are the most complex machines ever built. They span continents and encompass numerous interconnecting components and subsystems—while intricately balancing energy demand and fluctuating supply.

Not only are today’s grids complex, they are mammoth in terms of components and their geographical size. There are over one billion operational smart meters worldwide and the cables and lines stretch across 80 million kilometers. In other words: ten roundtrips between earth and moon!

And this complexity is only expected to grow. According to a newly released IEA report—Electricity Grids and Secure Energy Transitions—to reach climate targets and ensure energy security, 80 million kilometers of power lines will have to be replaced or added by 2040.

As power grids increase in complexity and scope, grid operators are turning to digital twins. While digital twins have been applied for decades by an array of industries, they are increasingly being used to help grid operators make strategic planning decisions, optimize operational performance, and manage risks within the context of unprecedented complexity.

electrical grid

3 factors that made grids so complex

  1. As the world transitions from fossil fuels to renewables, grids need a better equipment to handle the variability of energy sources from wind, solar and hydroelectric.
  2. The growing threat of severe weather caused by climate change is putting an additional strain on antiquated electric infrastructures globally.
  3. 40GW of rooftop solar panels have been installed worldwide in 2022. This massive, fuzzy, intermittent deployment of solar energy injected into the grid has brought major challenges in power quality and load forecast management.

To handle these growing challenges, power grid operators have turned to digitization to improve the operational management of networks. Smart meters and IoT sensors provide operators with valuable data; yet, they add an additional layer of complexity.

Digital twins: From grid knowledge to understanding

With this increasing complexity and the overwhelming flow of real-time data, digital twins are proving pivotal to the operation of smart grids. They are used in order to:

  • Simulate ‘what-if’ scenarios to understand, for example, operational outcomes of varying decisions
  • Manage and foresee maintenance needs
  • Avoid or limit grid downtime
  • Help operators present data-backed asset investment plans.

The power of digital twins is their capacity to virtually reproduce the multi-scale interactions and correlations between organizations, thus providing a more holistic view of the grid and avoiding decisions made in silos. This gives decision-makers of any given department, such as engineering, planning, and operations, the ability to stimulate the consequences of various decisions and their impact throughout the organization. As such, calculated decisions are made based on implications, expected outcomes, and trade-offs and not just on past knowledge and experience.

Digital twins are revolutionizing grid management, as demonstrated by the landmark initiative to build a digital twin of Europe’s electricity grid. One of the initiative’s key aims is fostering innovative technologies in the race to ensure the readiness of the electricity grid for the drastic increase of renewable energy and resiliency to future shocks (such as climate and cyber-attacks).

6 key areas where digital twins are revolutionary

There are six key areas where the deployment of IoT-connected instrumentation sensors together with digital twins are providing impactful benefits and value to grid operators.

digital twins - IoT

Nexans’ solutions: AI-powered analytics and simulation digital twins

Digital twins empower operators with enhanced visibility and grid transparency, predictive capabilities, and decision-making insights, all crucial for navigating the complexities of modern energy systems.

Nexans contributes in several ways to the modernization of grids, of which digital twins are an essential part, particularly with two of its solutions: Adaptix.Grid and Asset Electrical.

Adaptix.Grid, the AI-powered analytics offering from Nexans’ partner Sensewaves, provides power grid operators with a comprehensive and precise computable model of their grid that lays out the detailed topology of the network, even at low voltage levels. Thus enabling grid operators to shorten the intervention time of field crews in case of outages or visualize the areas of congestion accurately and re-balance the grid accordingly.

Simulation digital twins, such as Nexans’ Asset Electrical, built in partnership with CosmoTech, lets infrastructure owners simulate whether asset maintenance and renewal policy changes could impact the company’s quality of service or financial indicators.

For example, strategic asset managers using Asset Electrical can stimulate, leveraging objective data, whether postponing the replacement of an asset family reaching its theoretical end of life (meaning deferring capital expenditures) poses a significant risk regarding the occurrence of network incidents or from an environmental point of view.

Digital twins represent a significant paradigm shift in electrical grid management. They facilitate all aspects of the business and operational mission of grid operators. They are paving the way for more reliable, resilient, efficient, and sustainable power grids, thus enabling the industry to meet its ambitions to be at the forefront of the transition to clean and decarbonized energy.

Olivier Pinto

Author

Olivier Pinto is Nexans Innovation Director in charge of services and digital solutions for power grids. He leads a team of grid experts developing a portfolio of innovative offerings designed to solve the issues and address the challenges faced by electrical network operators, leveraging on a solid ecosystem of technology partners. Olivier joined Nexans in 2001 and has held various R&D, operational and sales & marketing positions. He holds a M.Sc. from the School of Chemistry, Physics & Electronics of Lyon, France.

Energy storage technologies: Enabling grids to transition to decarbonized electricity
Electrification of tomorrow
16 January 2024
4 MIN
energy storage

As a key driver to move away from fossil fuels, which are a massive source of CO2 emissions, renewables are an essential part of the future of energy. In this context of race against time to combat climate change, a growing emphasis is put on decarbonization of electricity.

The transition to renewable energy on a large scale is reliant on energy storage technologies. Energy storage is an essential part of the transition to clean energy and the foundation upon which the decarbonization of today’s grids must be built. Due to the intermittent nature of renewable energy — mainly wind and solar — grid operators must rely on energy storage systems to balance supply and demand. This interdependence means that storage is integral to grid resilience and reliability.

renewable-energy

It is projected that by 2030, global energy storage installations will reach a cumulative 411 gigawatts (GW), according to the latest forecast from research company BloombergNEF — an increase of 15 times the storage online in 2021.

Other significant factors driving energy storage growth are government policies aimed at curbing increasing energy prices, meeting peak demand, and energy independence. In 2022, the Inflation Reduction Act (IRA) bill was signed into law, representing the U.S.’s largest investment to fight climate change.

Energy storage challenges: the need for widespread grid-scale technologies

A major challenge facing the industry today is the need for widespread grid-scale storage technologies. Today, the most viable solution is pumped-storage hydropower, which generates electricity by pumping water into a reservoir and then releasing it to generate electricity at a different time. Unfortunately, this technology can only be applied in specific locations. As such, grid operators must resort to fossil fuel energy sources to meet peak demand periods.

However, in recent years, advancements in storage technologies are now providing new opportunities for the potential to meet energy fluctuations in energy demand without resorting to fossil fuels. Thus giving grid operators the ability to store excess renewable energy and, to some extent, help balance in real-time energy demand to meet peak periods.

technologie-perspective-2

Five renewable energy storage technologies ensuring a reliable power supply

Proper energy storage ensures a reliable power supply as the electricity grid becomes more dependent on variable renewable energy (VRE) sources. What often differentiates technologies are their storage capabilities, reactivity, scalability, and application requirements.

Battery storage: increasingly safe and cost-effective

Battery storage is increasingly vital in solar and wind applications as it can be easily installed and provides a cost-effective solution. In recent years, newer battery technologies, alternatives to traditional lithium-ion batteries, have made their deployment safer and more cost-effective. For example, zinc batteries provide a viable alternative due to their superior stationary storage capability, non-flammability, and stable supply.

Thermal energy storage: a viable alternative for commercial buildings

The emergence of newer thermal energy storage (TES) technologies is making it a viable alternative in commercial buildings. TES systems can store heat or cold to be used later and are divided into three types: sensible heat, latent heat, and thermochemical. When installed in a building, a TSE solution allows the building itself to act as a thermal battery — storing renewable energy in tanks or vessels to be used when needed.

perspectives-img-hyd

Hydrogen energy storage: leveraging electrolysis for a stable and reliable carbon-free energy

Hydrogen energy storage is an ideal carbon-free fuel that can lessen reliance on fossil fuel backup power plants to match supply and demand. Its high-energy storage capacity makes it attractive for grids integrating larger shares of variable energy. Because energy sources like wind and solar are variable, hydrogen storage enables any excess renewable energy to be converted into hydrogen through electrolysis. This surplus hydrogen, stored in fuel cells, ensures stable and reliable carbon-free energy.

Superconducting magnetic energy storage: for an instant and efficient release of energy

Superconducting magnetic energy storage (SMES) stores energy in a magnetic field. Because it can release stored energy instantaneously, it is considered ideal for grid applications requiring fast reaction time. Due to its negligible energy losses, there is increasing interest in finding a way to use it in large-scale energy storage applications. A few prototypes are currently in service, mostly under investigation, and they are beginning to be identified as a possible cost-effective solution.

Mechanical energy and pumped hydro-storage: ensuring grid reliability at scale

Mechanical energy storage encompasses a wide range of technologies, including pumped hydro-storage (PHS), flywheels, compressed air energy storage (CAES), and liquid air energy storage (LAES). Today, the technology most widely used in large-scale energy storage is PHS, considered the ideal form of clean energy storage for electricity grids reliant on wind and solar energy.

Absorbing surplus energy, PHS technology releases energy when demand spikes, thus ensuring grid reliability at scale. The International Hydropower Association (IHA) estimates that PHS projects worldwide store up to 9,000 gigawatt hours (GWh) of electricity, accounting for over 94 percent of installed global energy storage capacity.

What is the future of energy storage?

New materials and the development and supply of storage batteries for surplus renewable energy are quickly evolving to meet maturing requirements. Newer power electronics can convert stored energy into electricity to provide low to zero-impact solutions.

Nexans contributes in several ways to the energy transition, of which electricity storage is a key element, starting with the supply of transmission and distribution grids for the collection of renewable energy—wind and solar—at the source. It is crucial to collect electricity where it is generated (e.g. offshore wind farms) at an acceptable cost. The integration of storage sites is based on the same connection capacity, whether on a high-power scale or more widely distributed over a region.

Integrating variable renewable energies into smart grids will require an ever-increasing ability to monitor real-time usage requirements alongside automated systems in order to balance demand and supply loads. Faced with the need for greater flexibility, Nexans has developed new services accordingly.

For electric mobility applications, which are highly dependent on the technical and economic performance of electricity storage, Nexans supplies proper cable connections and protections, as for charging stations of electric vehicles, through specific safety functionalities to ensure safe energy storage.

perspective-technologie-4

Nexans has also acquired worldwide expertise and leadership in electrical and fire safety, that can be extended to the new applications of storage, such as vehicle batteries as they are becoming increasingly crucial.

The Group has been innovating for decades with industrial cryogenic and superconducting systems, such as with the development of a cryogenic transfer system of liquefied natural gas and hydrogen. As liquid hydrogen is very likely to play a key role in storage, Nexans will continue to innovate with breakthrough technologies to design tomorrow’s electricity grid.

Progress in energy storage technologies is vital to the transition to clean energy and the decarbonization of electricity. In the future, large-scale energy storage technologies will evolve and thus provide smart grids with the ability to reach their full potential. Diversifying and strengthening the supply chain of the new equipment for a massive deployment is a major challenge, especially for critical raw materials in a tense geopolitical context. Innovating by recycling materials used in end-of-life products is already a key driver, for which Nexans has prepared and positioned itself particularly well

Frederic Lesur

Author

Frédéric Lesur is senior engineer in high voltage cable systems and power grids at Nexans with 25+ years’ experience, holding several R&D positions at cable manufacturers and utilities.

In 2021 he becomes responsible for the Grid Engineering Design Lab, helping customers optimize the cabling architectures of utility-scale renewable farms projects.

His passion for science popularization made him the host of the YouTube channel WHAT’s WATT by Nexans.

Frédéric has always been an active member in standardization and working groups. Author of 50 publications, he contributes to major conferences and workshops in the field of power grids.

Grid flexibility and digitalization – integral to the transition to clean energy
Digital transformation
13 December 2023
4 min
grid flexibility

As intermittent renewable energy becomes a larger share of the world’s power, grid flexibility will become increasingly instrumental. According to the European Commission Joint Research Center, compared to today, grid flexibility requirements will more than double by 2030 and be seven times as large by 2050.

As clean energy transition advances, grid digitalization will be an enabler alongside flexibility management. In recent years, grid digitalization investments have progressively increased from 12% of total grid investment in 2016 to 20% in 2022, driven by system operators requiring digital solutions to improve the management of the grid with real-time monitoring and control of energy flows for transmission and distribution networks.

Grid modernization is imperative to accommodate the expected electrification growth. Moving away from fossil-fuel-based electricity means that today’s grid must be able to integrate large share of renewable energy resources and address associated technical challenges.

Virtual power plants: The big move for electric generation

A new generation of distributed electricity resources (DERs) is gaining momentum as a way to solve the increasing demand for clean, renewable energy.

Advances in battery storage, EV and solar technology, coupled with the desire of utilities to expand renewable power, mean Virtual Power Plants (VPP) are fast becoming a favored approach to meeting growing electricity demand and the need for more resilient power systems.

A VPP is both a technical and transactional platform connecting a vast number of diverse resources to deliver, in seconds, a megawatt-scale power response to an instruction, reducing complexity for grid operators. In addition to the technical aspects, it provides the transactional flow by remunerating each resource for its contribution to the final service receiving payment from the Transmission System Operator (TSO), Distribution Grid Operator (DSO) or power market upon the available opportunity. Revenue stacking is gaining importance in delivering value to the DERs owners.

Because a VPP can provide power by tapping into the Distributed Energy Resources (DERs)—building blocks of VPPs—it can quickly balance supply and demand, thus avoiding potential power outages and reducing energy costs to the end user. In recent years, VPPs have increasingly been implemented in residential and commercial buildings to attract new buyers and provide reliable, lower-cost electricity. Even consumers can join a VPP. As an example, last year, Tesla launched its new power utility provider service in Texas that lets Powerwall owners sell excess energy back to the grid.

DER: paradigm shift in energy distribution

The distribution grid is facing unprecedented transformation as the growth in DERs increases. This transformation will require new levels of grid management and monitoring. The Advanced Distribution Management System (ADMS) is an essential component of the modern control center. Instrumental will be the digitalization of power flow observability, fault detection isolation and restoration, network reconfiguration and outage management systems. The new challenge of the distribution grid will predominantly be at the low-voltage level, where a greater level of observability is needed and requires the flexibility from DERs. This is where the Distributed Energy Resources Management System (DERMS) complements the ADMS by enabling a grid aware DER flexibility orchestration down to low-voltage level.

paradigme-shift

Grid digitalization: a journey

Realizing this digitalized future grid is a transformation journey with some key points we can highlight.

The first is to understand the network’s topology and the grid’s ADMS and DERMS platforms to see if the overall network is being used to its full potential. The second is the observability of the network at low-voltage level. The Supervisory Control And Data Acquisition (SCADA) systems predominantly cover medium-voltage, while investments to monitor and control at low-voltage levels are often lacking. Yet, data driven approach tapping into smart meters or other available monitoring devices can overcome this limitation enhancing capabilities offered through the ADMS and DERMS.

The third is the interoperability and cybersecurity of the VPP, ADMS, and DERMS. Interoperability is essential to enable a smooth operation between these different systems. Cybersecurity is vital as the connections between grids and third-party operators increase.

Finally, it is important to ensure that grid equipment and cable systems, in particular, are sized appropriately for variability. Optimizing resource allocation is essential to ensuring future network expansions.

To solve the lack of network observability, Nexans is collaborating with Sensewaves to create a computable grid topology for DSOs. Sensewaves’ Artificial Intelligence-based analytics software leverages smart meter data (or other sources) to enhance planning and asset reliability (particularly cable systems) for DSOs. This unique combination of data analytics and AI provides invaluable insights beyond operational management typically offered through the ADMS and DERMS platforms.

Grid modernization is imperative to adapt to the expected electrification growth. Moving away from fossil-fuel-based electricity means that today’s grid must be able to accommodate the interconnection of renewables. New technologies in distributing, transmitting, and managing clean energy will play an instrumental role in reducing carbon emissions.

Anne-Soizic Ranchère

Author

Anne-Soizic Ranchere is in charge of Marketing for Power Accessories and Grid Design Lab at Nexans.

She has 16 years’ experience in the electrical sector, in strategic analysis, product innovation and project valuation. She worked at ENGIE in Belgium as a Senior Analyst, managing the valuation of investment projects in power generation infrastructure.

She has extensive experience in the field of smart grids and energy services, having held senior positions in marketing, operations and innovation at a leading company in the field of electrical flexibility in Europe, the Middle East and Asia, as well as in Singapore as principal in the energy research institute and a consulting firm.

Anne-Soizic holds a Master’s Degree in Science and Executive Engineering from Mines ParisTech.

5 sensor technologies for value-driven grid data management
Digital transformation
29 November 2023
6 min
banniere-cinq-technologies-de-detection

The necessary transformation of grids, in a context of a world’s transition to renewable energy and of a growing demand for decarbonized electricity, requires an infusion of digital intelligence.

In this context, sensors are essential. They are the ‘eyes and ears’ of the modern power grid, providing invaluable data critical to the reliability, efficiency, and adaptability of tomorrow’s grid data management.

Five sensor data technologies are transforming today’s power grids.

1. Smart meters for an effective energy measurement

compteurs-intelligents

Smart meters have quickly become the innovative solution of choice to metering energy effectively. In the past decade, they have overwhelmingly replaced traditional meters and transformed the interaction of utilities and consumers with energy resources. According to the International Energy Agency, more than one billion smart power meters are globally in use, a ten-fold increase since 2010.

They allow consumers to monitor their consumption smartly and energy providers to analyze better usage patterns and forecast future energy consumption needs. They enable a reliable, efficient, and resilient network.

Smart meters come in three variations, each with different features:

  • Standard smart meters accurately measure electricity consumption and enable remote meter reading, eliminating the need for manual readings. They often support time-of-use pricing, allowing consumers to save money by using electricity during off-peak hours.
  • Intermediate models add two-way communication between consumer and utility. They offer load profiling, providing detailed data for optimizing grid operations and load management. They may also support outage detection, helping utilities respond promptly to power interruptions. These meters may incorporate tamper detection mechanisms, alerting utilities of potential electrical energy theft, which can result in important non-technical losses to the operator.
  • Advanced meters often support demand response programs, enabling utilities to control or adjust electricity demand remotely during peak times. As power quality sensors become the standard, it will help to identify voltage fluctuations and sags. Grid monitoring capabilities offer insights into the health and performance of the distribution grid, such as low voltage arcing or faults, allowing utilities to take proactive maintenance measures.

2. Single and multi-conductor current sensors

To meet ambitious net zero targets and avoid volatile and rising energy costs, grids must reduce unnecessary energy wastage.

Sarah Marie Jordaan, Assistant Professor of Energy, Resources, and Environment at Johns Hopkins University, says 500 million metric tons of carbon dioxide can be cut by improving global grid efficiencies. These savings represent more than one percent of the worldwide CO2 annual emissions. But as Scottish-Irish physicist William Thomson, better known as Lord Kelvin, wisely said, ‘If you cannot measure it, you cannot improve it.’

Solutions such as single and multi-conductor current sensors are a game changer for process and plant managers. They are field-proven solutions that can be installed directly around conductors and cable feeders to selectively and rapidly deploy audit sessions. They enable installation without operation interruption so as to build concrete energy-saving strategies leading to energy consumption reduction of up to 20 percent.

25-billion-devices

3. Energy harvesting: converting small amounts of energy from the environment

In remote or challenging-to-access locations, the deployment of sensors poses sustainability and operational expenditure challenges, primarily concerning battery management.

With the industry set to witness over 25 billion connected objects in the sector by 2025, energy harvesting emerges as a pivotal technology to facilitate the expansion of sustainable sensors and Internet of Things (IoT) solutions.

As a concept, energy harvesting involves capturing and converting small amounts of energy from the environment or nearby power sources, such as cables. The most prevalent energy harvesting method is photovoltaic, which transforms light into electrical energy. Cost-effective and customizable for indoor lighting applications, it is an ideal fit for IoT solutions.

Inductive technology is another popular choice for cable systems. It empowers devices to operate independently by harnessing energy from power cores or terminations. This approach offers sensor functionality without the need for maintenance, delivers environmental benefits, and extends the system’s lifespan.

Recent advancements in electronic devices, including processing units and low-power wireless technologies, enhance overall efficiency and thus establish the harvesting approach as a reliable power source.

4. Edge-to-cloud: a revolution in maintenance practices

Edge-to-cloud integration is continuously revolutionizing maintenance practices, making them smarter and more efficient, particularly in the context of power grids.

At the edge, innovative hardware, including microcontroller technologies, such as advanced FPGAs (Field-Programmable Gate Arrays), are strategically placed along the grid to collect real-time cable system health data parameters such as load, temperature, humidity, vibration, or electromagnetic transient.

They enable real-time feature extraction, allowing fast processing of critical data patterns from raw information at the edge. This capability enhances the quality and relevance of the data transmitted to the cloud for further analysis and storage.

Edge AI, driven by supervised machine learning, aids in raw data filtering, such as noise reduction and early detection of deviation from standard operating conditions.

This data is then transmitted to on-premises or cloud maintenance applications such as Nexans’ Asset Monitoring Platform designed to bring decision making insights to asset managers and maintenance teams.. The seamless connectivity between the edge and the cloud empowers grid operators to implement predictive and condition-based maintenance strategies. By harnessing the power of this technology, they can identify early warning signs of asset failures, optimize maintenance schedules, and reduce costly downtime.

Edge-to-cloud technology plays a pivotal role in making grid maintenance proactive and data-driven, ultimately leading to increased reliability, enhanced safety, and cost savings, all while ensuring uninterrupted power supply.

5. Fiber optics: minimizing power disruptions

Optical fiber can be applied for remote data acquisition or as distributed sensor applications where traditional techniques are impractical or costly to deploy.

The emergence of fiber optic sensing technology is providing grid operators with a more cost-effective and accurate way of acquiring data compared to punctual sensors.

Distributed fiber optic sensing is the ability to continuously measure activity throughout the power grid, helping operators to quickly pinpoint the exact location of potential or actual disruptions and thus minimize or even avoid costly power outages.

fiber-optics

Sensitivity of fibers to temperature and mechanical strain offer a comprehensive approach to distributed sensor applications:

  • Distributed Temperature Sensing (DTS) enables the early detection of abnormal events such as hotspots and thermal bottlenecks due to condition changes in the surrounding laying environment of the cable. When combined with real time temperature rating algorithm, DTS systems allow to assess the operational condition and circuit power rating, allowing safer operation of the cable to its real conditions.
  • Distributed Acoustic Sensing (DAS) offers precise fault detection, localization and third-party interference detection both onshore (e.g., cable theft, digging, and drilling) and offshore (e.g., anchor drops and drags). Thus, providing efficient power cable condition monitoring by listening 24/7 to acoustic signatures.
  • Distributed Strain Sensing (DSS) continuously measures strain and deformation along the cable’s length. It enables the assessment of cable structural health data, ensuring that cables are not subjected to excessive mechanical stress (bending, stretching, etc).

Nexans has been at the forefront of distributed fiber optic sensing measurement technology for high-voltage (HV) cables since the early 1990s, beginning with the installation of a Distributed Temperature Monitoring (DTS) system used for the Skagerrak 3 link between Norway and Denmark. Since then, these technologies have undergone continuous enhancements in length, precision, efficiency, and cost-effectiveness.

With the emergence of innovative new technologies, sensors play a vital role in shifting to smart electrical grids. Sensors provide invaluable data critical to the reliability, efficiency, and adaptability of tomorrow’s grid data management.

Aymeric André

Authors

Aymeric André works as New Solutions Manager at Nexans within the Sales & Marketing department of the Generation & Transmission Business Group.

In 2019 he joined Nexans Services and solutions team within the Innovation Service and Growth Department as a Design Lab Manager for asset monitoring to help enhance the company’s digital offers.

He has previously worked at the SuperGrid Institute where he led a research program on high voltage subsea technologies.

Samuel Griot

Samuel Griot is the head of electrical engineering department within Nexans Innovation.

He leads a team of experts developing new innovative solutions for low, medium and high voltage applications in order to answer the future needs for the electrical grids. Samuel joined Nexans in 2021 and has a strong background in electrical grid architecture and switchgears.

He holds a Master degree in electrical engineering from INSA of Lyon, France.

Industry 1, 2, 3, 4… and 5.0
Circular economy
08 November 2023
10 min
banner-industrie-5-0

Nexans aligns its data with business operations

A shift is under way. Many countries, including the USA and France, are turning away from the factory-free economy – the dominant model of the past last 30 years – to rediscover the advantages of manufacturing at home. This shift creates a unique opportunity to promote the development of new-generation plants, reflecting new economic, social and environmental challenges. Local for local has always been the watchword at Nexans, which is seizing this opportunity to take a new step forward in its development. By integrating its rigorous management model with its international production base, the company will be in industry 4.0 mode by 2026.

When we talk about the digital revolution, we tend to think first of the glut of the information inundating our lives, every day of every week, announcing a new revolutionary smartphone, a new multi-cooker or the latest mind-boggling breakthroughs in artificial intelligence (AI). It’s a subject that has only recently come to the fore in the business world, with the fierce debate around the impact of AI on business activities and the rapid automation expected in many areas, from programming to accounting, medicine and law.

Paradoxically, industry has attracted far less interest as a subject of discussion. And yet it is a subject of key importance, not only in terms of jobs, innovation and value creation, but also in terms of sovereignty. The Covid-19 pandemic was a wake-up call for European countries, which became aware of the scale of their economic and strategic dependence, in the light of the tensions between China and the United States. Factories have a key role to play in adapting our economies to the new technological order.

industrie-reinvente

How industry is reinventing itself with industry 4.0

This comes as no surprise, since changes in the workshops have always been associated with breakthroughs in technology, continuing a cycle that began with two industrial revolutions. The steam engine and the first factories were followed by the arrival of electricity, machine tools and mass production, and then – in the 1950s – by electronics, automation through programming, numerical control machinery, industrial robots and the first supervisory software packages.

The fourth revolution, currently unfolding, directly continues the ongoing process of computerization, while taking it to a whole new level. The first step is to establish a new energy base, moving away from the fossil fuels that powered the previous three revolutions. The second step is to maximize the use of a key new resource – corporate data – by building on a powerful high-tech mix that has now reached maturity: very high-speed infrastructure (fiber for fixed connections and 5G for mobile), combined with data hosting and mass processing (Cloud, Big Data, AI), decentralized intelligence and smart objects (IoT) and new forms of human-machine interaction (mixed reality, digital twinning, avatars).

This avalanche of innovations is paving the way for a complete rethink of the way companies work, with particular emphasis on all the processes involved in production. For many industrial powers, this is now a priority. It is no coincidence that Germany was the first to launch an Industry 4.0 plan in 2011, with an eye to maintaining the excellence of its industrial base. Pursuing the same objective, China is investing in high value-added factories in order to retain its industrial might and address a growing labor shortage. France adopted a similar strategy in 2015, with its Alliance for the Industry of the Future, an association of 32,000 companies meeting every year at the Global Industry trade show. This year, Nexans was in the spotlight claiming two Golden Tech awards in the Designer and Maker categories at the 2023 event, held last March in Lyon.

Nexans 4.0 on course for 2025

These goals are part of a new commitment involving everybody at Nexans. The Group is moving towards the global digital integration of all areas of the company and its ecosystem in order to simplify processes, improve performance and response, boost productivity and safety, limit unnecessary operations, as well as to anticipate and plan for events (predictive maintenance, inventory management, customer satisfaction, etc.).

nexans-horizon-2025

In a recent survey of French business, 98% of the companies interviewed said that they have already planned or deployed initiatives relating to Industry 4.0 (7th edition of the Wavestone barometer on Industry 4.0, conducted in partnership with Bpifrance and France Industrie).

The main motivations cited are industrial performance (for 30% of respondents) and data control (27%). Note that ecological impact and energy performance were in third place this year (15%).

The Nexans Group took the first step towards change in late 2020, when it teamed up with Schneider Electric, a company with proven experience in transforming its own industrial base. The process initiated by Schneider Electric places the emphasis on reliability, productivity, improved availability through predictive maintenance, energy efficiency and protection against cyber-attacks. The first step in the partnership involved major investments at pilot sites in Autun, France and Grimsås, Sweden. The process will be deployed at eight more sites by the end of 2023, with the aim of upgrading all 45 Group plants on four continents by late 2025, at a pace of between 12 and 15 sites every year.

10

Nexans plants upgraded
by the end of 2023

45

Nexans plants upgraded
by late 2025

12 to 15

Nexans plants upgraded
pe year

These fundamental changes involve the mobilization of Group data: the raw material of this new industrial revolution. Although the proportion of data used by the Group rose from 5% to 10% between 2019 and 2023, the aim is to reach 70% by 2026.

Vincent Dessale

We are approaching the Group’s digital transformation on two levels, first by integrating new technologies into our operations, and second by creating a collaborative environment.

Vincent Dessale

Chief operating officer, Nexans

This approach connects production tools using IoT and AI resources, while allowing employees to take back control through dashboards, decision-support indicators, and quality and safety monitoring. It also supports efforts to cut response time and time to market.

Reasons for a revolution: what actually changes in the field

First, we will see changes in the way we work every day. Because the transformation is not just about technology, even though connected machines, AI-powered robots are becoming an increasingly common site in factories, along with self-driving forklift trucks roving the aisles of the logistics centers ​​by day and by night. However, the most spectacular changes concern human workers, with workshops packed full of screens, tablets and connected goggles.

This is a sensitive subject, since the success of the transformation will depend on how well people are able to work alongside machines. This is precisely the aim of Industry 5.0, as it is sometimes called. The objective is to expand and strengthen the digital transformation by supporting better collaboration between people and machines, while ensuring that creativity and well-being are not overlooked.

​​This aspect is taken into account from the outset in the Nexans project:

  • Real-time dashboards monitor the smooth running of production lines, currently in each plant and soon across the Group’s entire global industrial base. Real-time data supervision boosts industrial performance and quality control, while also reducing the consumption of energy and raw materials, and cutting energy costs by 15%.

Predictive maintenance

Discover with Chao Li, Digital Development Engineer, and Tobias Karlsson, Predictive Maintenance Operator in Grimsås how predictive maintenance has been put in place in our Swedish factory. The objective is to monitor the main production indicators such as temperature, pressure, traction, to detect evolution on the trends of these parameters.

We can now pick up on many errors before they occur. It’s a bit like being able to see into the future with all the data collected.

Tobias Karlsson

Predictive maintenance operator at Nexans in Grimsås, Sweden

  • A corporate social network gives operators access to video modules and tutorials, along with a chat forum. The forum is invaluable for discussing best practices and finding solution fast, since users are able to post questions directly for the online community. It is also a way to keep track of past actions, contributing to the sharing of information between operators, staff and management and the smooth running of day-to-day operations, while also helping workers to be more self-reliant.

Operator mobility

This digital transformation program supports our operators and make their life easier facilitating access to all needed documents and supporting remote production.

Discover with Chao Li, Digital Development Engineer, and Mylène Iller, Production Operator in Autun (France), how operators’ lives is made easier.

When we get back from vacation, for example, all we have to do is look at the news feed to find out what’s been happening while we’ve been away, on our line and on the site in general.

Mylène Iller

Production operator at Nexans in Autun, France

  • Connected goggles are used to reduce workplace stress, establishing a direct line between experts and operators at any time, to manage sensitive production phases or urgent production problems, through the use of augmented reality.

General program introduction

Lionel Fomperie, Nexans Group Industrial Strategy Director and Thomas Wagner, Nexans IS Performance Director give a general program overview and explain how Operations are working together with IT/OT to generate IT/OT and Cybersecurity platforms.

At this key stage in the process, the aim is for digitization to free operators from repetitive work, so that they can focus on tasks with higher added value. The digital transformation will also play a role in increasing the appeal of our business for the younger, digital-native generation, while creating opportunities for us to enrich job profiles, reduce the time spent on machines, and enhance skills through appropriate training programs.

To harness its full power, this new approach to managing the production base must be integrated with the company’s strategic objectives. Taking this process as far as possible, Nexans is making sure that its industry 4.0 plan is consistent with the E3 management model, underpinning the transformation of the group by supporting the goals of economic performance, environmental virtue and employee commitment.

Focus on 3 use cases

Lionel Fomperie, Group Industrial Strategy Director, Chao Li, Digital Development Engineer and Olivier Ameline, Nexans Excellence Way Director drive us through three use cases: Unified Operation Cockpit (UOC), MES Performance (Manufacturing Execution System) and SQDCE Digital board: S for Safety, Q for Quality, D for Delay, C for Cost & E for Environment.

Sustainable buildings for a brighter future
Electrification of tomorrow
12 October 2023
6 min
Sustainable buildings

Today, governments from around the globe with bold commitments to reduce greenhouse gas (GHG) emissions are pressuring the construction and building sector to reduce its carbon emissions and consumption of raw materials.

And for good reason. Commercial and residential buildings are responsible for almost 40% of greenhouse gas emissions (GHG) and consume 30% of final energy globally. Decarbonizing the building and construction sector is critical to achieving net zero emissions by 2050. Doing so will need fundamental changes in how buildings are designed, built, and operated worldwide. This shift will require the sector to favor more environmentally friendly building materials and practices, institute better material efficiency strategies, and reduce raw material usage.

Innovative construction materials

The move to innovative low-carbon building materials is essential to reduce the building and construction sector’s environmental impact. Concrete is not only the most commonly used building material but is responsible for 8% of global GHG emissions.

A viable alternative to traditional concrete is low-carbon brick made from recycled materials or traditional clay bricks fired in a low-carbon process using biogas from waste, biomass methanation, or solar and wind power.

Construction materials company Saint-Gobain, for example, is leading the way in the production of sustainable, low-carbon products. Earlier this year, the global company announced the production of zero-carbon plasterboard at its modernized plant in Fredrikstad, Norway. Decarbonizing the manufacturing process was possible by switching from natural gas to hydroelectric power, thus avoiding 23,000 tons of CO2 emissions annually. In addition, the company is the first in the industry to produce zero-carbon flat glass, made possible by using 100% recycled glass (cullet) and 100% green energy produced from biogas and decarbonized electricity.

Eco-friendly materials such as hemp and flax are viable alternatives for reducing the sector’s environmental impact. Cavac Biomatériaux, specializing in the industrial application of plant fibers, manufactures insulation from hemp and flax.

Better material efficiency strategies

The 2022 Global Status Report for Buildings and Construction foresees global consumption of raw materials to double by 2060. By implementing better material efficiency strategies, there is a massive potential for the building sector to reduce its GHG emissions, according to the report’s panel.

Furthermore, material efficiency strategies, including recycled materials, in G7 countries could reduce emissions in the material cycle of residential buildings by more than 80% in 2050. Globally, the Ellen MacArthur Foundation estimates that the circular economy would reduce CO2 emissions from building materials by 38% in 2050.

A key initiative within the European Union’s Circular Economy Action Plan (CEAP) is the Digital Product Passport (DPP). This initiative aims to make sustainable products the norm in the EU by facilitating transparency throughout the value chain and boosting circular business models. Instituting a circular business model in the building and construction sector is key to reaching important sustainability targets.

Reducing raw materials usage

Construction materials and products are estimated to consume 50% of all raw materials extracted from the Earth’s crust, and demolition activities represent 50% of all waste generated. To reduce its cables’ environmental impact, Nexans increasingly uses low-impact materials throughout the production value chain.

It is projected that the availability of important raw materials will continue to decrease in the years to come. An example is copper, an essential component of electrical cables and wiring due to its high conductivity and strength. Because copper mining can no longer meet global demand, 40% of copper production comes from recycled copper.

For over 35 years, Nexans has been recycling copper and aluminum scrap as part of its Sustainable Development policy to reduce raw material usage and promote a circular business model. In 2008, Nexans and SUEZ launched RECYCÂBLES, France’s leading recycler of cables and non-ferrous metals. The joint venture processes 36,000 tonnes annually of cables, generating 18,000 tonnes of metal granules and 13,000 tonnes of plastic. The combination of leading-edge technologies enables the generation of 99.9% pure copper granules.

Today, Nexans uses up to 15% of recycled copper in new cable manufactured and is on target to use recycled aluminum by 2024. Employing recycled copper, aluminum, and plastics provides Nexans’ customers a sustainable product without compromising quality.

Environmentally friendly building materials

With the global floor area expected to double by 2060, implementing energy-efficient and environmentally friendly building materials and practices is vital.

Nexans is working to improve the impact of its products by sourcing components that meet reduced energy usage guidelines established by the company’s Corporate Social Responsibility (CSR) directives. In addition, Nexans’ R&D product development aims to protect the environment and human health by managing the chemical substances used in its manufacturing processes and ensuring that all new projects take into account the end product’s environmental footprint. For example, starting in 2025, a large part of cables manufactured at the Nexans facility in Autun, France, will be halogen-free to reduce their toxic gas emissions in the event of a fire.

Energy-efficient, zero-carbon buildings will require looking at how building materials are designed, made, and used. This will mean examining the value chain and changing how we make, use, and reuse all materials—from the actual product to the packaging and transportation—to reduce the industry’s overall environmental impact.

Christophe Demule

Author

Christophe Demule is the Building Innovation Director at Nexans, working within the Innovation Service and Growth Department. Previously, he held the position of Engineering VP for our Business Group Industry Solutions & Projects, bringing with him extensive experience in manufacturing. In 2021, he designed and launched the implementation of the Building Innovation Strategy with the creation of six Design Labs worldwide. With a focus on User experience by using the Design Thinking Methodology, Innovations are solving pain points of our customers and bringing added value to all stakeholders.