Superconducting cables, miracles of electrical connectivity
Electrification of tomorrow
06 September 2023
5 min
Superconducting cables

Superconductivity is currently the subject of intense interest and debate, fuelled in particular by research into superconductors at ambient temperature and pressure, the discovery of which would trigger a technological revolution. The many questions raised by this work are reminiscent of the scientific challenges researchers had to overcome when they discovered high-temperature superconductors in 1986. A look back at this crucial technology for the cable industry, exploring recent advances, persistent challenges, but also how Nexans is providing the world’s very first superconducting cable system integrated into a rail network.

As we move towards an all-electric future, the need to increase power supply in cities becomes ever more urgent. Equally important is the need for resilience: as electricity becomes the main source of energy, supply will need to be 100% reliable. Downtime is not an option.

Why superconductors?

Superconducting cable are electrical connectivity miracles. They have unique qualities that make them perfectly suited to modern, high-capacity electrification projects in cities.

First, superconducting cables can carry extraordinarily high currents – far greater than conventional copper or aluminium cables. This makes it possible to transmit and distribute electricity at relatively low voltages. In practical terms, this means there is less need for substations in city centres – a major cost saving.

Second, superconductors can transmit a huge amount of power relative to their size. For example, a single superconducting cable with a diameter of just 17 cm can transmit 3.2 GW – enough to power a large city. Corridors for superconducting cables can be as narrow as one metre, meaning they can be deployed with minimal disruption.

Third, superconducting cables do not produce heat and can be fully shielded on an electromagnetic standpoint, so there is no interference with power, telecom and pipe networks which typically criss-cross cities. Many of the constraints that govern cable routing do not apply when superconductors are used.

On top of this, superconductors are incredibly efficient. Superconducting cables have extremely low resistance when an AC current is carried and no resistance when the current is DC, so losses are minimal.

superconductor-cable-nexans

A first for rail

Nexans is working with SNCF, France’s national rail company, on a pioneering project to boost power supplies to Montparnasse station in Paris using superconducting cables.

Montparnasse is one of the busiest railway stations in France and handles more than 50 million passengers a year. This figure is expected to exceed 90 million by 2030. Handling new demand will require extra trains – and extra power.

As with any city-centre power upgrade, the big challenge at Montparnasse was finding a way to bring in a new power supply without the need to dig up the surrounding roads – which can be a long, expensive and disruptive process.

Fortunately, the existing cable route between Montparnasse railway station and the substation that serves it had spare conduits available. Unfortunately, there were only four of them. Using conventional copper cables to deliver the required power would require a dozen of cables. What could be done?

Superconducting cables are the answer. Nexans’ solution uses just two cables, each less than 100mm in diameter so they can be easily threaded through the existing conduits. Despite their small dimensions, each cable is capable of handling 5.3 MW, or 3500 A at 1500 VDC – a huge amount of electrical energy.

What makes this project so significant is that it is the first-ever use of superconducting cables in France, and the first time superconductors are integrated in a railway grid anywhere in the world. The new power supply at Montparnasse will be commissioned in 2023.

What does the future hold?

The Montparnasse project underlines the massive potential superconducting cable systems have for boosting power supplies in cities – particularly where site constraints place limits on the use of conventional copper and aluminium cabling.

Rail transport aside, superconducting cable systems are likely to play a bigger and bigger role in satisfying the rising demand for electricity. This is being driven by new commercial uses – such as data centres – and by new sources of domestic consumption, which include electric vehicle charging, heat pumps and air conditioning.

In addition to meeting increased demand for bulk power, superconducting systems will play a critical role in boosting the resilience of urban electricity networks.

The Resilient Electric Grid (REG) project in Chicago, USA, underlines the direction of travel. Nexans designed, manufactured and installed a superconducting cable for the REG system, which helps to prevent power outages by interconnecting and sharing excess energy capacity from nearby substations, and by preventing high fault currents.

Nexans is the global leader in superconducting cable systems. Our unique capabilities in R&D, innovation, testing, manufacturing and deployment mean that we are perfectly placed to assist our customers, partners and stakeholders as they prepare to electrify the future.

Unleashing the power of DC buildings
Electrification of tomorrow
25 July 2023
7 min
Direct current powered buildings

With the global demand for electricity expected to increase 20% by 2030 and the increasing pressure to transition to renewables, the War of the Currents is once again in the spotlight.

Back in the 1880’s, when Westinghouse and Edison were battling for their respective approach to electricity distribution, the infrastructure to transmit direct current (DC) power was at the time inefficient and expensive. And as such, Nikola Tesla’s approach using alternating current (AC) ultimately won. And since that time, our current electrical infrastructure is dominated by AC technology. But times have changed since then.

Today, over 70% of devices in a building need DC to operate. A conversion from AC to DC results in energy wastage of upwards to 20%, according to EMerge Alliance. Reducing the need to convert has profound implications regarding energy savings and environmental impact. And this is why eliminating or reducing AC to DC conversion in buildings is critical.

The International Energy Agency reports that in 2021 the operation of buildings accounted for 30% of global final energy consumption and 27% of total energy sector emissions. As a result, governments are placing increasing pressure on the building sector to move towards ambitious energy performance directives to reduce the carbon footprint of buildings. Directives such as “nearly zero-energy buildings” in the U.S. and in Europe aim for buildings to require a low amount of energy provided by renewables produced on-site or nearby.

Directives like these, along with the growing usage of self-consumption, onsite battery storage and DC-powered devices from LED lighting and heating, ventilation and air-conditioning (HVAC) systems to electric vehicles (EV) and electronic devices, are driving the building industry to switch to DC power distribution.

The move towards to reliable DC cable systems for DC microgrid

In terms of electric power distribution, there is a progressive shift towards DC due to the growing interest in low voltage (LV) and medium voltage (MV) microgrids reflecting the fundamental changes in how electricity is generated, stored, and consumed. We are convinced that AC and DC networks will coexist with a significant share.

However, expert knowledge of the behavior of the insulation system is vital to ensuring the reliability of LV cables and accessories in buildings.

The behavior of LVAC cable systems is largely known but not for LVDC.

One of the focuses of Nexans’ R&D center AmpaCity is to optimize our cable design: we perform this optimization, which is achieved by understanding the electrical behavior of insulation systems under DC stress conditions and the impact of DC current on cable breakdown, ageing and corrosion. We’re also committed to investigate on more effective polymers for DC cable insulation with lower environmental impact than AC classical solution.

DC building transformation is a Fact

As mentioned earlier, power generation is moving closer to demand. Rooftop solar photovoltaics are becoming more commonplace. According to the EU Solar Energy Strategy, EU will make compulsory the installation of rooftop solar in new public and commercial and residential buildings. Furthermore, PV panels produce natively DC. In addition to the widespread implementation of on-site battery storage for uninterrupted power supplies (UPSs) used by businesses and data centers to maintain supply security, along with the growing deployment of battery energy storage systems (BESSs) for grid balancing.

Another major change in recent years is the growth of electric vehicles (EVs) and the need for DC charging stations in commercial, residential, and office buildings. With global policies encouraging and mandating the move to EVs, the market for chargers is growing rapidly, at an estimated compound annual growth rate (CAGR) of 29% from 2023 to 2050.

Local DC-power distribution

Distributing DC power locally throughout a building provides important benefits in safety, costs, and device reliability.

From a safety point of view, AC power is inherently more dangerous. In fact, the risk of electrocution of the human body by DC is considered to be lower than with AC, as the total impedance of the human body decreases as the frequency increases. And for high growth categories such as EV chargers, the move to DC versus AC chargers means better overall safety.

The data center sector accounts for around 4% of global electricity consumption, and is set to continue growing. Improving energy efficiency in this sector is crucial. For example, cost savings in electricity-intensive buildings such as DC-powered data centers can represent savings of 4-6% compared to conventional AC installations.

In addition to the reduction in electrical losses linked to the transport of electricity in cables, there is also the reduction in AC-DC conversion losses.

Providing DC devices (loads) with DC power eliminates power losses incurred through conversion and thus eliminates an estimated 5 to 20% in energy waste. In addition, the AC to DC conversion process at the device level can shorten its operating life. For example, distributing DC power directly to a LED fixture (thus avoiding the AC to DC conversion) can substantially extend its operating life. Plus, distributing DC power locally reduces the cost and footprint of AC to DC adapters and converters.

Transition to DC-powered buildings

In conclusion, DC power distribution in buildings is on the horizon, but change will take time. Even with a move to DC microgrids, there are other significant challenges to be addressed in the coming years, notably the uptake by industry professionals, many of whom need to become more familiar with DC power and its benefits. This is due to the long experience and knowledge of AC power.

Furthermore, advancement in building standards and codes which address specifications for DC-powered devices is required, as with the further analysis of the cost-effectiveness of DC power distribution in retrofit and new construction.

Cables are a fundamental part of a building’s electrical infrastructure and are a critical player in the transition to DC-powered structures. The buildings of tomorrow will be smart, connected, sustainable, and powered by DC. Nexans is committed to this transformation by manufacturing specific cable systems compatible with these new infrastructures. And our strategic partnerships and involvement in key industry groups are helping to make the transition to DC-powered buildings a reality.

Lina Ruiz

Author

Lina Ruiz is responsible for the LVDC, MVDC and new architectures technical platforms for Nexans within the Research and Territories Techno Centre.

She previously worked as a project manager and technical innovation team leader in the field of renewable energies. In 2023, she joined Nexans to accelerate the exploration program on direct current for low and medium voltage. In her current role, she is responsible for providing new and differentiated solutions in the field of direct current.

Digital solutions for building construction: A path to progress
Electrification of tomorrow
18 July 2023
5 min
Digitalization in building construction

A wave of change is happening in the building industry. As we’ve witnessed in the last couple of years, the sector once referred to as “brick and mortar” is bracing itself for a digital revolution. Traditionally slow to embrace new technologies, resulting in decades-long productivity stagnation, digitalization of the $7.5 trillion building construction market is long overdue.

In the 2022 McKinsey global survey of over 500 executives in the building products sector, an overwhelming 70% expected to increase their investment in innovation and R&D. So much so that survey respondents ranked digital design tools such as building information modeling (BIM), software solutions and automation ahead of sustainability.

Investing in innovation and R&D is expected to be the key market differentiator in the next three to five years – rippling across the entire value chain and driven in part by climate change and productivity.

Digitalization of the construction and building sector

Productivity has long been a major issue in the construction sector, with the average capital project running 20 months behind schedule and a staggering 80% over budget. The industry is increasingly applying digital tools across the entire spectrum, from design and construction to operations, but at varying levels depending on the construction phase.

Improving productivity necessitates closing the gap between product and document management systems to simplify and increase technician productivity.

Even as gains have been made, there is vast potential to further improve productivity through increased usage of digital technologies in all phases of the processes—design, construction, and operations.

With increasing government regulation for the industry to decarbonize, digitalization is a crucial enabler in reducing the environmental impact of construction projects globally.

Electrification of buildings

As the electrification of buildings grows and expands in the years to come, ensuring efficient implementation of cabling solutions is essential to safety and productivity gains. Narrowing the gap between productivity management tools and document management systems is one key to easing the work of electricians. As skilled labor shortages continue, further enhancements in information access and traceability are vital.

The digital connection between the physical product and its accompanying documentation is lacking in the industry. This is often the case with electrical products, where installers seldom have easy access to up-to-date documentation. The lack of traceability means details such as who installed the product are often lost once the initial work is completed.

As buildings move from fossil fuels to renewable energy, the demand for skilled electricians will increase, along with the need for tech-related professionals to manage the influx of digital systems and tools required to meet this industry shift.

Foundation of the digital revolution

As the building sector moves forward in its digital transformation, Building Information Modeling (BIM) will increasingly become the standard and foundation of construction projects. This bridging of physical building elements with their accompanying digital format (referred to as BIM content) facilitates the working processes throughout a building project’s value cycle from planning and design to construction and operations.

BIM content provides architects, designers, and builders easy access to essential product information such as installation instructions, energy consumption, eco-labels, operation costs, and product lifecycle. Nexans is working with BIM providers to integrate its offerings so as to facilitate electrical cable installation, maintenance, and safety.

As newer technologies such as drones, robotics, and 3D printing become more commonplace on construction sites, ensuring that BIM is the foundation of the construction industry’s digital strategy is critical. According to McKinsey, the move to 5D BIM, combining 3D physical models of buildings with cost, design, and scheduling data, could result in a 10% savings in contract value by detecting clashes, reducing project life span, and potentially reducing material costs by 20%.

Navigating analog to digital

The shift from analog to digital documentation and traceability is key to moving the building products market forward. And thus, reversing the industry’s fragmentation to ensure better productivity, cost efficiency, and safety. This is especially important in the electrification of buildings to provide safe installation and operations.

Thanks to its cloud-based app, Evermark™, Nexans provides its clients easy access to information about the physical product installed, such as follow-up of maintenance, electrical drawings and product data. Thanks to NFC tags, Evemark™ provides a digital connection between the physical product and the necessary documentation, and ensure full traceability of the electrical installation throughout the product’s lifecycle—from implementation phases to maintenance and replacement. It provides immediate access to pertinent information on- and off-site, reducing cost and time while increasing productivity.

With new technologies come new possibilities. The key is ensuring that future digital tools integrate seamlessly for a heightened level of customer satisfaction.

Jenny Nyström

Author

Jenny Nÿstrom is Nordics Design Lab & Innovation within Nexans. She has been working in the cable industry since nearly 20 years, being involved in the domain of product marketing and product management, mainly for Building, Telecom and Utility sectors.

Fire safety in buildings: Holistic certification for enhanced protection
Electrification of tomorrow
04 July 2023
7 min
Fire safety and buildings

Today, a fire breaks out every 30 seconds in Europe. 25% of fires are due to electrical failures, representing 275,000 fires yearly. With more than half of the world’s population living in urban areas and the demand for electricity increasing, ensuring the electrical safety of buildings is critical.

A vital step to ensuring the fire safety of buildings is taking a holistic approach to testing and certifying electrical cables with their associated components.

A key to this holistic approach is understanding how the shifts in electrical consumption and increased load requirements impact the fire safety of both new and older buildings. An estimated 25% of fires are caused by electrical failures or obsolete, overloaded installations. And this statistic worsens in emerging markets where 80% of building fires are due to non-compliant cables.

In essence, fire safety is a growing concern globally, and ensuring the safety of the building’s occupants is vital.

Electrification of buildings

Electrical cables are the backbone of buildings. The typical office building houses more than 200 kilograms of electrical cables per 100 square meters. Despite their omnipresence, they are unfortunately often forgotten. In older buildings, this can and often does lead to negligence in retrofitting outdated electrical cables and systems to ensure modern safety standards are met. And, with increasing electricity demand, installations in older buildings are often undersized and thus increase the risk of electrical fires.

Today, most older buildings require significant renovations to ensure their electrical systems are compliant with the rules and can adequately handle the loads required in offices, and residential, public and government buildings.

When it comes to new usages, the electrical architecture has to be considered at the early stage to ensure safety is tackled as a whole. There are still too much datacenters burning all over the world putting at risk the economy and sometimes life despite the availability of integrated solutions. Furthermore, photovoltaic installations are also at risk…

Most buildings run on several fuels. They obviously use electricity for lighting systems and electrical appliances, but they also consume fossil fuels such as natural gas or propane for heating systems. This persistent dependence on fossil fuels makes buildings one of the biggest sources of the pollution that is warming the planet.

The terms “electrification of buildings” and “decarbonization of buildings” all describe the transition from fossil fuels to the use of electricity for heating and cooking. In addition to heating and cooling systems using the latest generation of electric heat pumps, there will also be charging points for electric vehicles, which will systematically equip buildings in the future and help to reduce a major source of carbon emissions in developed economies: mobility.

The goal of such a transition: all-electric buildings powered by solar, wind and other zero-carbon electricity sources. In other words, it’s not just a question of increasing the level of electrification of buildings, but also the reliability of their electrical networks.

Fire safety starts with a holistic approach to certification

Cables are seldom the source of a fire, but due to the inherent nature of electrical arcs, their interconnections with electrical equipments and components are prone to igniting a fire. Understanding the interactions between these components is instrumental in ensuring better fire safety in buildings.

Today, most standards and certification bodies focus on validating each component in isolation. This lack of a holistic view of the interactions between electrical components within a building structure must be a concern within the industry. Fortunately, frameworks such as the National Fire Protection Association (NFPA) & Life Safety Ecosystem™ aim to identify the components that must work together to minimize fire risk.

Changing the industry mindset from the certification of each component to consider the interactions of components is fundamental to ensuring their compatibility and overall safety. This holistic and systems approach ensures that proper testing is done to validate that the overall system performance is achieved and certified. And that testing takes into account the usage of components in a real-life setting.

Moving to a systems approach for certification will require suppliers to work together in bringing to market thoroughly tested integrated system offerings that match the performance requirements of customers and failsafe installation processes. This will mean implementing plug and play and modular electrical products that reduce the risk of on-site installation errors and ensure component compatibility.

Nexans’ Fire Safety compatibility approach

Nexans aims to provide the highest electrical and fire safety levels by ensuring its cables and wires combat fire propagation, reduce smoke and hazardous emissions during a fire, and maintain the continuous operation of fire safety systems. These are the fundamental pillars of Nexans’ Fire Safety solutions and services.

To reduce hazardous emissions, for example, Nexans Fire Safety’s offering focuses on Low Fire Hazard (LFH) cables and forgoing outdated materials such as PVC.

Our mission to provide innovative products and solutions that meet the safety needs of our customers extends to our dedication to moving the industry to systems compatibility testing and certification. This is an increasingly important opportunity to ensure the fire safety of new solutions.

For example, Nexans recently took a system approach in developing an electrical vehicle (EV) charging infrastructure offering. To do so, we selected key partners to build the integrated solution, thus proving this approach’s viability.

The challenges and opportunities

Creating safer buildings will mean fundamental mindset shifts. For customers, it will mean moving their purchasing decisions from solely component cost to a total cost-of-ownership (TCO) approach encompassing fire risk management.

The industry must also encourage collaboration between key partners to ensure an overall benefit to all stakeholders, in addition to industry certification and performance standards with an active participation of insurance organizations.

In the coming years, new offerings must take a solutions approach to further demonstrate their benefits to customers. These benefits include better fire protection, safety, and ease of installation.

In addition, an integrated fire safety system approach to electrical components aligns with the industry’s move to Building Information Modeling (BIM), digital twins, and IoT technologies.

Franck Gyppaz

Author

Franck Gyppaz is the head of the Fire Safety Systems Design Lab at AmpaCity, the Nexans Innovation Hub. He has been working in the cable industry since more than 20 years, being involved in the domain of fire safety and developing innovative technologies, cable designs and a fire test lab with the ISO17025 accreditation and UL certification. He is also active in the field of standardization members of different groups at national and international levels.His position leads him to manage relationships with all the actors of the fire safety ecosystem to propose integrated systems to our customers.

Transforming buildings industry with
3D printing and modular construction
Electrification of tomorrow
27 June 2023
9 min
3D printing & modular wiring in buildings

The building and construction industry is increasingly embracing newer technologies and solutions to meet rising floor space demand, stricter sustainability and safety standards, increasing costs, and skilled labor shortages.

As the demand for residential, commercial, industrial, and high-safety buildings is projected to grow in the coming years, meeting demand will require more efficient building construction methods. Those gaining in popularity are 3D printing, drones, robotics, and modular construction.

At the heart of this evolution in the building and construction industry is the increasing demand for electricity, which is expected to grow by 20% by 2030. This means future construction must take into account more electrical cables, connectors, systems, and subsystems, while ensuring smarter and safer installation and operations.

3D printing – from novelty to mainstream in reshaping buildings

Going from curiosity to a viable tool of the building trade, 3D printing, also known as additive manufacturing, is reshaping the industry and demonstrating its viability to dramatically reduce construction time and costs. Moreover, the benefits extend beyond on-site but to off-site (prefabrication) of building components, adding yet another major application and appeal to its uses.

One of the more progressive moves to 3D printing technology is the Dubai 3D Printing Strategy which aims for one-quarter of Dubai’s buildings to be 3D printed by 2030. Examples include the 2,600-square-foot office complex housing the Dubai Future Foundation (DFF) headquarters and the Dubai Municipality completed by robotic construction company Apis Cor.

Benefits of 3D printing in construction have been highlighted during the 2023 Construction Technology ConFex:

  • Speed and efficiency: The layer-by-layer additive manufacturing process of 3D printing can dramatically reduce construction time compared to conventional approaches, enabling the project to be completed more quickly.
  • Reduced costs: By optimizing the use of materials and reducing labour requirements, 3D printing can reduce construction costs.
  • Customization: 3D printing makes it possible to create custom designs and complex architectural elements that would be difficult to achieve using traditional construction methods. Complex and unique shapes can be easily created using 3D printing, allowing architects and designers to explore innovative design possibilities.
  • Sustainable construction: Additive manufacturing can minimize material wastage by using only as much material as is needed, promoting sustainability in construction.

However, a number of challenges remain:

  • Limits of scale and size: Scaling up 3D printing for large-scale buildings or infrastructure projects remains a challenge. Current technologies may not be able to efficiently produce structures beyond a certain size.
  • Structural integrity and quality assurance: It is essential to guarantee the structural integrity and long-term durability of 3D printed components. Rigorous testing and quality assurance processes are required to meet safety standards.
  • Integrating electrical systems and other services into 3D-printed structures requires careful planning and co-ordination to ensure their smooth operation.
  • Regulatory and legal considerations: As 3D printing in construction becomes more widespread, regulatory frameworks and legal standards must be established to meet safety, liability and compliance requirements.

Robots and drones—redefining the building construction site

The construction robotic technology is going from sci-fi to reality in record-breaking time. A report from MarketsandMarkets expects the construction robots market to reach $166.4 million by 2023, representing a 16.8% compound annual growth rate (CAGR) from 2018 to 2023. And an IDC report published in January 2020 forecasts that demand for construction robots will grow about 25% annually through 2023.

Applications range from robots that can lay bricks and weld to self-driving diggers and drones that can survey and map construction sites and monitor progress. Most foresee robots assisting construction workers in repetitive and dangerous tasks while helping the industry tackle productivity and labor shortage challenges.

An example is Hilti’s semi-autonomous job site robot, Jaibot. Designed to assist mechanical, electrical, and plumbing (MEP) contractors, Jaibot uses BIM data to locate and drill holes for interior electrical and plumbing installations.

In the past couple of years, technologies not immediately embraced by the construction industry are now rightly finding their place, going from curiosity to a viable tool in the building trade.

Modular wiring—transforming the electrical landscape

With its roots dating back to the mid-’90s, Modular wiring revolutionizes the electrical landscape by replacing traditional installation methods with a convenient plug and play technology. It provides a quick, safe, and easy solution for connecting lighting and power circuits from the distribution board to the final connection point. Initially used in high-safety buildings like healthcare facilities, modular wiring is now widely utilized in schools and government buildings due to challenges such as labor shortages and increased infrastructure demands.

Over the past 30 years, modular wiring has gained popularity as a cost-effective and user-friendly alternative to traditional electrical installation. It offers numerous benefits throughout the entire construction process, from conception and design to operation and end-of-life. This has instilled confidence in governments, builders, and electrical contractors regarding its safety, cost-effectiveness, and efficiency for both new construction and upgrades.

To meet the increasing demand for floor space, architects and builders are relying more heavily on modular building techniques. According to a recent study by MarketsandMarkets, the global Modular Construction Market size is projected to grow from $91 billion in 2022 to $120.4 billion by 2027, up 5.7% from 2022 to 2027.

This trend is driven by the need for innovative approaches and the ongoing shortage of skilled labor. Modular wiring, along with other subassemblies and components, plays a vital role in enhancing productivity and performance while providing a comprehensive view of costs that includes factors like end-of-life, waste, and safety. With the construction industry shifting towards prefabrication and off-site construction, modular wiring will continue to grow in importance to meet government requirements, reduce costs, enhance quality and safety, and minimize environmental impact.

Wiring the future

Moving forward, the industry’s biggest challenges are changing attitudes about adopting newer construction technologies and methods and more encompassing metrics.

This means that electrical cables are not seen as a commodity and, as such, not only selected on price but on type, materials, safety, and more. This changing of metrics sees performance, risk, and sustainability as essential criteria in the overall measurement of a building project.

In Oceania, Nexans supports its customers as they embark on the energy transition journey, offering a complete modular wiring solution. This solution is an efficient and sustainable way to minimize electrical site waste and reduce the cost of installation. Moreover, it encompasses switchboards, corridor wiring, and in-room wiring through to end-of-circuit accessories.

With building information management and design moving to more detailed phases earlier in the conception stage, the inclusion of modular wiring is gaining its place. In addition, supply concerns and rising material costs are increasingly driving electrical contractors to include modular wiring in bids and the design phase.

The future of modular wiring solutions is strong and will continue to gain in popularity due to the benefits of cost-savings, reliability, ease of installation, safety, quality, and sustainability.

 

Often regarded as a commodity industry, the construction sector is no exception to the trend towards new technologies and innovations. It has a multitude of tools and solutions that are revolutionizing not only processes, but also ways of working and preparing a site. Numerous innovations are already proving indispensable in improving the organization of worksites, the quality of work and the efficiency of teams. The result is a whole new way of designing projects and completing them in record time.

Sustainable development, improved worksite safety, technological solutions to save time and money, digital tools to build more environmentally-friendly structures… Innovation in the building industry is everywhere.

Christophe Demule

Author

Christophe Demule is the Building Innovation Director at Nexans, working within the Innovation Service and Growth Department. Previously, he held the position of Engineering VP for our Business Group Industry Solutions & Projects, bringing with him extensive experience in manufacturing. In 2021, he designed and launched the implementation of the Building Innovation Strategy with the creation of six Design Labs worldwide. With a focus on User experience by using the Design Thinking Methodology, Innovations are solving pain points of our customers and bringing added value to all stakeholders.

IoT and electrification: Innovations shaping the future
Digital transformation
18 April 2023
8 min
Internet of Things IoT

The Internet of Things and connected objects: the stakes ahead

By 2030, there will be 30 billion connected objects worldwide, including 244 million in France, according to estimates by ADEME (the French Agency for Ecological Transition) and Arcep (the country’s electronic communications authority). Some will be everyday objects, others will be used in professional applications.

The Internet of Things (IoT) is briming with development potential and exciting possibilities for homes and businesses. As it expands, the IoT also brings new innovative solutions for electrification. It will help industrial companies increase their productivity and help people reduce their energy consumption at home. And it is growing 15% to 20% a year across the board.

Let’s deep dive into the IoT concept, the prospects for harnessing electrification, and the issues and challenges surrounding it.

The Internet of Things: how does it work?

The IoT is a network of connected devices with built-in microprograms, sensors and connectors enabling them to interact with the Internet. Examples range from household appliances to electricity meters and on to cable drums.

The IoT, in a nutshell, makes things smart. They can collect data, process it onsite and share it online or with other devices to analyze it in more depth. Then they can take measures to improve operations or automate tasks.

When you transfer data online, you can build an intelligent ecosystem where you can use devices in more sensible and more modular ways. You can upgrade a home into a smart home, a city into a smart city and a grid into a smart grid. In France, with 35 million smart meters, electrification is among the sectors that have reached the most advanced stages of digitalization with the IoT. And it will reach even further as Enedis, which operates the country’s electricity distribution system, has announced plans to install 250,000 sensors throughout its grid over the next 5 years.

The possibilities on the operation side are opening up numerous opportunities. For example, home automation environments will be able to manage energy consumption. For connected objects to communicate effectively, however, they need specific systems. These include radio-wave modules, sensors, cellular routers and gateways, and they are all essential to manage data flows and tackle the related challenges.

IoT and innovative electrification solutions

The IoT is bringing in an array of electrification solutions that create value in homes and companies:

  • Managing energy consumption: the IoT can help consumers keep an eye on their energy consumption and manage it more efficiently using real-time electricity and gas meter readings. Smart connected objects can also be programmed to switch off automatically when they are not being used, which also reduces energy costs.
  • Monitoring equipment: companies can use the IoT to monitor their solar panels, wind turbines and other systems remotely, to make sure they are running properly and optimize their output.
  • Storing energy: the IoT can also help to monitor and manage storage levels, and optimize battery charging-discharging cycles.
  • Reducing costs: the IoT can also help to reduce operation and servicing costs by enabling predictive maintenance, shortening downtime, and optimizing supply chains and use of resources.
  • Optimizing grid operation: the IoT does this by tracking demand for energy in real time and adjusting supply accordingly, which can help to reduce power production costs and optimize distribution.

Issues and challenges around connected products

There are several practical and economic issues and challenges surrounding IoT operation.

IoT communication

When you have objects scattered around the globe, the first challenge is to interconnect them. Some of them may be in city centers, others may be in out-of-the-way places that telecom networks barely reach. To tackle this challenge and improve scalability, Nexans uses a variety of communication protocols and teams up with telecom operators worldwide.

Then you must integrate the routers, sensors and other devices mentioned earlier. Three main notions come into play in IoT rollout:

  • the reach of the equipment and connected objects you use;
  • energy consumption;
  • bandwidth requirements and capacity.

In other words, you must adapt the available resources to match the complexity of the infrastructure—and that infrastructure can span a local area, a country or the globe. That is why it is important to partner up with other experts, as Nexans started doing with Orange in 2020.

Cybersecurity for the IoT

Cybersecurity is as central to the IoT as its efficiency. The more connected objects, the greater the risk of cyberattacks, because the objects collect sensitive data and can provide hackers with a back door into a company’s information system. The entry point can be a computer as much as a connected object.

Even something as simple as a camera can be a way into the core system. A casino in London, for example, was hacked through an Internet-connected fish-tank thermometer linked to the rest of the system. Ironclad security protocols are an absolute must for the IoT: a device can be a risk however harmless it may seem.

The IoT business model

Large-scale IoT rollout is viable even when you factor in all the complexity associated with integration. It for instance provides several advantages in industrial production and supply chains:

  • smoother goods flows and real-time monitoring and updates;
  • more efficient collaboration between departments;
  • better goods tracking and transit;
  • swift and secure data collection;
  • tighter control over stock.

Besides all of the above, customer service teams can respond faster, especially when they have to deal with delivery delays or other problems.

Ultracker: the Nexans solution to optimize supply chains

Here at Nexans, we have developed Ultracker, a pioneering digital solution to harness the possibilities in the data collected by IoT sensors, combined with artificial intelligence and cloud storage.

With this solution, our customer installers and utilities can:

  1. optimize their working capital and logistics flows;
  2. shrink their carbon footprint by shortening drum rotation cycles;
  3. reduce losses and prevent cable theft.

The IoT trackers embedded in our cable drums and transportation fleets, and our cable-related products, enable customers to track drum status more closely, see a clearer picture of their stock levels and supervise jobsites remotely. This cuts raw material and supply wastage.

Nexans’ IoT expertise, and the solutions we have set up with our partners enable cable system and cable life cycles management, range from delivery on site to measuring how much cable there is left on a drum before pick-up. A leading European electricity distributor that adopted Ultracker to monitor its cables via the IoT is saving over €1 million a year.

Big data and AI in energy: Electrification’s game changer
Digital transformation
01 March 2023
10 min
Big data & AI

Artificial Intelligence (AI) has been around for a while. The first models date back to the 70s but these concepts remained theoretical until we were actually able to teach computers to think for themselves. Today, Artificial Intelligence is everywhere. It allows computers and cloud connected devices to reproduce human-related behaviours such as reasoning, planning and creativity. Artificial Intelligence is primarily dependent on the quantity of data it is given. This is where big data plays an active role. With the increased collection and analysis of digital data, big data and AI are now emerging as rich areas of opportunity for electrification professionals.

Electricity 4.0 : Big data and AI for smarter power management

Big data is a major trend in the energy industry. The Electrical network become smart grid due to Data collected from a variety of sources, such as smart meters, sensors, twin digital. Once stored, this data is an invaluable resource for the industry to make better decisions about energy production and consumption.

Electricity was deployed extensively in the late 19th century, which was the First Wave of Electrification from 1880 to 1920. This period saw the widespread adoption of electrical power in industry and the development of the first electrical grid. Then the Second Wave of Electrification took place between 1920 and 1950 with the expansion of the electrical grid into homes and the development of new electrical appliances such as refrigerators, washing machines… During the third wave of Electrification from 1980 to present, we have seen the growth of the digital revolution and the development of new technologies such as computers, the Internet, and mobile phones.

Today the fourth wave of electrification so-called Electricity 4.0 is characterized by the integration of digital technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), and advanced data analytics into the electricity infrastructure.

The aim of Electricity 4.0 is to create a smarter, more efficient, and more sustainable electricity system that can respond to the fast changing demands (+20% by 2030, +40% by 2040).

Electricity 4.0 is expected to optimize the use of existing assets, integrate renewable energy sources into the grid, increase energy efficiency, reduce greenhouse gas emissions, improve grid stability, reduce costs for customers and provide more reliable and flexible energy services to customers.

Moreover, generative AI and adjacent models are changing the game. Indeed, support technology reaches a new level, application development time is reduced, and powerful capabilities are brought to non-technical users.

Just recently, we saw the buzz around ChatGPT and what it can achieve. For instance, if we ask the question “how do big data and AI impact electrification”, we have to admit ChatGPT answer might not be perfect but is still very impressive.

Explain how big data and AI impact electrification - ChatGPT

These technologies will definitely have an impact on the world of electrification. But AI is mainly dependent on the quantity and quality of the data that will be used to learn. Big data provides the storage and processing capabilities necessary to educate the AI by feeding it with a lot of information.

Machine Learning and AI are the winning combo to efficiently exploit big data. This involves identifying patterns via data mining and data science more generally.

Big data: The cloud has won

In the age of big data, the famous wave 2 of “move to cloud” announced by providers is underway and is accelerating. As a reminder, the first phase of a migration to the cloud is a discovery phase that allows to analyze the strengths and weaknesses of an infrastructure and to determine future needs.

The number of detractors is getting smaller every day, privacy and sovereignty issues are both solved by the strategic commitments of clouders and swept away by the ease of use… All sectors – banking, telecoms, insurance, etc. – are rapidly adopting cloud-hosted big data solutions.

The first paradigm shifts are appearing in the world of electrification, driven in particular by operators such as Total Energie or Schneider. We can also note the predominance of the estimated Azure services of Microsoft Vs Aws of Amazon in the field of public cloud related to big data.

Exploring the challenges of generative AI and Big Data in 2023

Generative AI promises to make 2023 one of the most exciting years for AI and, by extension, Big data!
Keep in mind that ChatGPT’s prowess is based on the net recorded in 2021, but, as with any new technology, we must always proceed with pragmatism and measurement, because the technology now presents many challenges:

  • Ethics: what sovereignty for data? What protection for personal data? What commitment to transparency and readability by the players?
  • Environment: AI and Big Data are a paradox in that they are both a solution for optimizing energy consumption and resource mobilization, but also a cause of this increase;
  • Cybersecurity: AI and Big Data in the field of energy is largely based on measuring instruments, therefore on IOT, offering an ever increasing security surface;
  • Business Model: if the value of AI in the energy field is no longer to be demonstrated, the business model associated with services is very complex. For example, if we take the residential segment, the Chat GP virtual assistant has made the buzz as has Amazon with the announcement of a massive layoff, including the Alexa division (Amazon’s virtual assistant), in the same week;
  • Talents: the development of digital services requires the onboarding of excellent technical skills, but not only. It’s the entire operating model that needs to be rebuilt. The human dimension is one of the biggest challenges brought by AI and Big Data: attractiveness, meaning of work, conditions, etc.

Big Data analysis combined with artificial intelligence also involves various risks. Key concerns include unintended consequences of automated decision-making, increased risk of cyber-attacks due to reliance on technology, inaccurate predictions leading to poor decisions, over-reliance on algorithms instead of human judgement, lack of transparency in the development process, etc…

AI and big data for Nexans

As previously expressed, AI in the energy domain is most often carried by a phygital system, meaning software + hardware.

To this end, an important part of our work in terms of AI and big data concerns the implementation of learning based on neural networks. The latter’s role is to translate images or text from measuring instruments (thermometers, drones, etc.) into numbers. The aim of these approaches is to understand recurrences, date them, predict them and locate them. We are in the AI for grid sensing.

One of the important activities in the field of electrification is the monitoring of networks for all segments: generation, transmission, distribution and use of electricity in buildings and industries. this requires the development and implementation of sensors that measure electrical activity along the value chain.

This is already the case in developed economies at home or in industry with Smartmeters. High voltage transmission lines are also systematically monitored for temperature and voltage. Medium-voltage electricity distribution networks and the connection networks of distributed renewable energies are less frequently monitored.

It is therefore essential to obtain data on the entire electricity deployment chain.

A second important activity is the analysis of data in order to optimise products or systems. this is at the heart of artificial intelligence and Big data.

In technical terms, we mobilize the techniques developed essentially for the field of natural language processing with recurrent neural networks and more precisely convolutional neural networks. In other words, the technology stacks of ChatGPT & DALL-E.

A long-term energy transition

Big Data is a hot topic with huge implications for the energy sector. It is a powerful tool that can be used to improve the efficiency of energy systems, production and consumption. In addition, it can also be used to improve electrical networks and smart technology.

Thanks to Big Data, it is possible to explore various scenarios and objectives related to the energy transition. In particular, this technology makes it possible to analyze how different systems and supply sources are interconnected and how they could be optimized in the long term. Thus, it offers an invaluable perspective to achieve a certain autonomy in a long-term energy transition objective.

The 3S (smart, small & selectivity) are challenges for the years to come. Addressed in a disorganized way today, they will become the real challenges for AI applications tomorrow:

  • Smart data: Understanding and monitoring local ecosystems
  • Small data: Limit the use of energy-intensive big data
  • Selectivity: optimize the resources needed.
The power of digital twins: Revolutionizing carbon reduction strategies
Digital transformation
23 February 2023
8 min
Digital twins

Using digital twins to reduce carbon emissions

First mentioned in 1991 by David Gelernter, the idea of the “digital twin” was first applied by NASA in the 1960s with the Apollo program. It was the space agency that coined the term Digital Twin.

The concept of a digital twin consists in reconstituting objects, processes or physical services in a virtual environment. Its use contributes to improving the design and functionality of systems, optimize their maintenance and diagnose possible problems. Digital Twins have also turned into powerful decision-making tools for strategic planning.

What is the principle behind digital twins?

A digital twin (DT) is a virtual representation of a service or physical object. It ranges from the simplest to the most complex objects such as components, mechanical parts, gears, buildings, cities or electrical networks as big as a country. It also includes the digitalization of industrial processes.

The digital twin generates simulations in order to observe a potential future scenario. The outcomes could change depending on a variety of different factors such as environmental conditions.

The digital twin helps to shorten the duration of the design phase, as well as reduce operating and maintenance costs. The use of digital twins is often combined with other digital technologies, such as the Internet of Things (IoT), artificial intelligence, cloud computing,. Main applications fields are found in industries as diverse as healthcare, aerospace, energy, and automotive.

The three types of digital twins
We can categorize digital twins into three main groups:

Product DT

A virtual representation of a single component or a larger set of a physical object, such as a car engine or a road bridge.

Process DT

A numerical view of an entire manufacturing process or a logistics and supply chain flow.

System DT

A generated multidimensional image of a more complex system such as a building or even a city.

Operating possibilities and design of a digital twin

Digital twins are tools available to a wide range of users and many different functions can benefit from their implementation:

  • Designers and engineers can build network architectures that are optimized for efficiency and cost, or simulate the resistance of a machine under severe environmental conditions (for example, the behavior of an aircraft turbine vibrating at a high frequency).
  • Supply chain and production managers can monitor systems, such as an electrical network, logistics flows, and anticipate malfunctions or failures (for example, they can anticipate the impact over the entire chain of supply of a major disruption of logistics flows or raw material shortage).
  • Investment planners and managers can assess the impacts of alternative arbitration scenarios between maintenance opex and investment capex.

Digital Twins rely on three major building blocks:

  • Collection & organization of real world data to create the virtual replica. This step is not only based on data but also collects physical equations, modelling when it exists of the interaction between the components of the system.
  • Processing by the user of the data through an interface to perform configuration as well as visualize the simulation results and therefore “interact” with the digital twin
  • Analytics and computing power made possible by cloud technologies capable of processing massive amounts of data and modeling very complex multidimensional systems and their interactions

As is true with any major digital transformation program, implementing cybersecurity risk assessment routines, mitigation procedures, and a dedicated organization are important pre-requisites before launching a digital twin program.

By 2027, companies and other players in this market are expected to spend up to $73 billion on digital twins, and the market is expected to grow by 30 to 45%. In addition, the digital twins could increase speed to market by 50% and the quality of products offered by 25%.

What are the main advantages of digital twins?

Companies that embrace a dedicated digital twin design strategy can unleash substantial value

  • Ability to make more informed decisions in complex environments through a better understanding of the impact on multiple indicators of multiple possibilities. it is a decision support tool that is capable of running thousands or hundreds of thousands of scenarios and analysing their consequences and bottlenecks
  • Strengthening risk management by testing mitigation plans to respond to extreme scenarios (for example, simulating the spread of a fire in a building to identify optimal escape routes)
  • Ability to react in near-real time to the status of critical equipment (for example by balancing the load of the power grid to reduce or eliminate local congestion)
  • Shorter new product development cycles through virtual testing of alternative prototypes, designed-to-cost
  • Reduced operating costs through an optimization of the productivity and efficiency of manufacturing lines.
  • Improved product quality through real-time sensor monitoring and better control of production process parameters
  • Creation of customized services and new offerings and business models: moving from periodic maintenance to predictive maintenance
  • Knowledge management and sharing such as the codification of informal, best practices implemented on the shop floor into standard operating procedures

How Nexans uses digital twins for decarbonized electrification?

The world around us, our lives, and our mobility will need to be more electric in the future as electrification is one of the immediately actionable lever to fight and limit the impacts of climate change. The energy grids must be reliable, however, as an electric future will not afford blackouts. The more dependent on the grid we become, the more resilient these systems must also become.

In partnership with Cosmo Tech and Microsoft, Nexans is developing a digital twin solution dedicated to electrical networks. The grid operators will benefit from a powerful software allowing them to reduce their carbon footprint by adopting new investment and maintenance policies while at the same time preserving their profitability by maximizing the value of their infrastructure.

Leveraging real world data, Nexans acts also on the installation, operation, and maintenance of electrical networks.. Leveraging the data from sensors installed on the network, Nexans provides a near real-time view of the areas of congestion on the network and can also detect and localize imminent failures before they occur.

To achieve its objectives in terms of financial, environmental and social dimensions, Nexans has built its own Digital Twin solution E³, a business performance tools that is as powerful as it is unique. This tool measures and monitors the performance on the basis of three KPIs, i.e., Return on Invested Capital, Environmental Return on Carbon Employed, and Return on Skills Employed.

What is the main takeaway of digital twins?

The digital twin brings augmented intelligence to human skills. Its design and deployment use modeling tools, data analytics and lots of computing power to predict different outcomes to scenarios across business. One of the great advantages of digital twins is that they take into account future data, future interactions or equations between components that do not necessarily exist in past data.

Sitting at the crossroads of artificial intelligence, data analytics, and the Internet of Things, digital twins open untapped pools of productivity and performance to a variety of users. From engineering and supply chain managers to c-level decision makers, digital twins move the future forward.

Olivier Pinto

Author

Olivier Pinto is Nexans Innovation Director in charge of services and digital solutions for power grids. He leads a team of grid experts developing a portfolio of innovative offerings designed to solve the issues and address the challenges faced by electrical network operators, leveraging on a solid ecosystem of technology partners. Olivier joined Nexans in 2001 and has held various R&D, operational and sales & marketing positions. He holds a M.Sc. from the School of Chemistry, Physics & Electronics of Lyon, France.

Electrical fire safety solutions: Protecting lives and assets
Electrification of tomorrow
01 February 2023
9 min
Fire safety

Safe and sustainable electrification is at the heart of our mission

Over 1.1 million fires break out in Europe every year. That’s one fire every 30 seconds. And the human toll is huge: 4,000 fatalities and 134,000 injuries per year. Not to mention the economic impact, with damages running into the billions: in its Global Claims Review 2022, Allianz insurance listed fire as the largest single identified cause of corporate insurance losses, having resulted in more than €18bn worth of insurance claims over five years. Out of those businesses hit by fire, an estimated 70% of them will not restart.

The latest report from the FEEDS (Forum for European Electrical Domestic Safety) shows that more than 25% of fires are caused by electrical failures – mainly due to electric appliances or to obsolete, overloaded installations.

But aging infrastructure is only one part of the story. Accelerated population growth and urbanization around the world mean more people are using electricity every day. At this rate, a 20% increase in demand is expected by 2030, and up to 40% by 2040.

And with new forms of energy use come new risks. From tablets to smartphones, our reliance on electrically powered digital devices is only growing. The rise of new energy usages in building, such as electric vehicles or rooftop solar panels, increases the burden on domestic wiring systems, and the risks related to fire.

This higher electrification has a strong impact: the NFPA (National Fire Protection Association) found out that electrical distribution, lighting, and power transfer equipment accounted for half of home fires involving electrical failure or malfunction. Knowing the devastating impact of fire, such threat requires an adequate answer to protect assets and life.

How do electrical systems contribute to a safer world?

Cables are the electrical backbone of a building, being present everywhere and in large quantities to transport energy and data. They link rooms and floors, go through the walls without interruption, and their number keeps increasing with new energy usages. The fact that they are usually hidden makes it easy to forget their presence. Yet a typical office building will have over 200kg of cables per 100m². It is therefore essential to ensure that cables are as inert as possible when exposed to fire, to avoid spreading flames throughout the building.

In recent years, the emphasis has been on improving fire performance in response to new regulations, such as Europe’s Construction Products Regulation (CPR). Nexans is deeply engaged in this process, working with its partners, customers, and regulation bodies to promote electrical fire safety in buildings, and to adopt higher safety standards at both the national and international level.

Combating fire propagation

Cables do not represent a danger as such, but due to their omnipresence, they can act as fuel for fire and be a vector of flames propagation. A fire that starts in a vertical electrical installation that comprises low-performance cables will reach the first floor of the building in less than three minutes, and will continue to spread with growing speed.

At Nexans, we aim at revolutionizing the safety of buildings, infrastructures and homes, by using our technological expertise to design cables and wires that offer the highest level of performance against fire. Our Nexans Fire Safety offer underlines what can be achieved: thanks to our Low Fire-Hazard cables, smoke emissions, fire propagation and heat release are minimised. Moreover, the cohesiveness of the cable structure is maintained during fire, reducing or eliminating the production of flaming droplets, hence avoiding the start of secondary fires and limiting the risks of injury for firefighters.

All those elements have a major impact on people’s ability to evacuate safely, on time, and with the best possible visibility. In the meantime, low fire-hazard cables facilitate the work of firefighters as they release water when exposed to flame, reducing the fire temperature and diluting combustible gases.

Now a breakthrough to boost the fire performance of cables is in our pipeline. Based on geopolymer technology, this innovation works by creating a hard and hermetic crust around the stranded wires that makes them incombustible. In addition to improving fire resistance, this technology has the benefit of improving the environmental performance of cables by reducing their embodied carbon content – cutting CO2 emissions by 10 to 15% at the manufacturing level.

Smoke reduction during a fire

Smoke and hazardous emissions are the main cause of causalities during an indoor fire, being responsible for 80% of fire-related deaths. Corrosive gases in smoke attack the lungs, as well as the eyes and skin. On top of this, smoke severely limits visibility, making emergency escapes from a building more difficult.

Nexans Fire Safety range is designed to transform fire safety. Our cables minimise smoke emissions, enabling a visibility ten times higher than with traditional designs in the event of a fire – five times higher than the recommended threshold. Furthermore, they reduce the emission of hazardous and corrosive gases, increasing drastically the chance of escape, as well as assisting firefighters as they tackle the blaze.

Fire safety systems

Fire resistant cables play a crucial role in maintaining the continuous operation of fire protection and life safety electrical systems – even when a building is on fire. Minimum durations for maintaining electricity supplies in the event of fire are set out in national regulations. Cables must be capable of performing reliably even in extreme conditions, with temperatures up to 1,000°C, and for a duration up to 120 minutes.

Fire protection and life safety systems include:

  • Fire detection systems: smoke detectors, heat detectors, manual call points
  • Fire alarm systems: alarms/sounders, and control panels
  • Fire protection systems: active (sprinkler) and passive (such as fire walls and fire-rated doors)
  • Smoke control systems (pressurisation and extract systems)
  • Building egress systems (including exit signage).
Fire safety systems

Fire safety systems

Safety system components rely on connection to the power network. Fire resistant cables are often used to provide power, or to make connections between emergency equipment and control panels. When this is the case, they function as “active” elements since they must maintain electrical continuity or transmit a signal for an adequate amount of time.

Three main technologies are used to produce fire resistant cables.

First generation designs were based on copper conductors wrapped with mica tapes and cross-linked polyolefin. In this case, the core technology is the mica, and cable performance is related to its quality, nature, suppliers, and taping.

Second generation cables were based on conductors insulated with silicone rubber. This material has the property of forming a ceramic shield when burned. This maintains high electrical resistance and it is the most common solution for building applications.

For the latest generation of Fire-Resistant cables, we broadened our range with innovative cables based on the patented INFIT™ insulation technology which combines the advantages of both mica and silicone rubber insulation, but without their drawbacks (mica is difficult to strip, while silicone is soft and brittle). INFIT™ fire performances are similar to usual market technologies (silicone rubber or mica tape), but brings exceptional mechanical performance, making the installation easier and creating value with important time-saving and thus cost-saving advantages.

With INFIT™ cables, it is possible to connect all the devices of a fire detection system, including smoke detectors, to ensure that fires are detected and alarms raised. All of this ensures a rapid escape and contributes to effective firefighting.

We focus on your needs

At Nexans, our mission is to provide innovative products and solutions that meet the safety needs of our cable customers. We give our clients the power to design, install and manage their projects with the highest level of safety for your customers. Nexans Fire Safety solutions and services allow to Anticipate fire risks, Secure assets and Protect Life.

We back this up with comprehensive information and advice to help you make informed fire safety decisions – so we can electrify the future with confidence.

Franck Gyppaz

Author

Franck Gyppaz is the head of the Fire Safety Systems Design Lab at AmpaCity, the Nexans Innovation Hub. He has been working in the cable industry since more than 20 years, being involved in the domain of fire safety and developing innovative technologies, cable designs and a fire test lab with the ISO17025 accreditation and UL certification. He is also active in the field of standardization members of different groups at national and international levels. His position leads him to manage relationships with all the actors of the fire safety ecosystem to propose integrated systems to our customers.

EV innovation: Accelerating the transition to sustainable mobility
Electrification of tomorrow
13 January 2023
10 min
Electric vehicles

Like other sectors, the automotive industry must evolve to meet future economic and ecological challenges. Currently, thermal vehicles are responsible for nearly 10% of CO2 emissions worldwide. In developed economy such like in France, this figure rises to 15%. The electrification of these vehicles is therefore a key issue in the transition to a low-carbon economy.

According to the World Energy Outlook 2022 published by the International Energy Agency, the increase in global electricity demand between now and 2030 is equivalent to adding the current electricity consumption of the United States and the European Union! Such an increase in electricity is in the range of +5,900 to +7,000 TWh depending on the scenario.

The main contributors to such an increase are:

  • electrical transport in advanced economies,
  • population growth and demand for cooling in emerging markets and developing economies.

Electric mobility is an important stake and a major driver of additional electricity demand. However, this objective should not only focus on the development and evolution of vehicles by manufacturers but also take into account the infrastructure. It is important to focus on the need for recharging infrastructure and innovative technologies dedicated to electric vehicles (EVs), which should enable users of this type of vehicle to travel anywhere, at any time, with complete peace of mind and ensure the functioning of the electrical system.

Electrical vehicles: a major change coming required by energy transition

The public authorities in several countries are multiplying initiatives to foster this evolution of mobility solutions. Among the actions in force or under study, a growing number of countries have pledged to phase out internal combustion engines or have ambitious vehicle electrification targets for the coming decades. In Europe, the objective set is to stop the sales of new combustion-powered vehicles by 2035.

The IEA Announced Pledges Scenario (APS), which is based on existing climate-focused policy pledges and announcements, presumes that EVs represent more than 30% of vehicles sold globally in 2030 across all modes (excluding two- and three-wheelers). While impressive, this is still well short of the 60% share needed by 2030 to align with a trajectory that would reach net zero CO2 emissions by 2050.

By 2025, it is estimated that the electric vehicle market in France will be worth 12 billion euros, including 8 to 11 billion euros in sales of electric vehicles, 150 to 250 million euros for charging stations and 300 to 600 million euros for the sale of electricity needed for charging.

The fast deployment of EVCS, key condition of the development of electric vehicles

This transition to electric vehicles requires three main conditions to reach the target ambition:

  • The development of new & attractive vehicles, with the following issues at stake: battery capacity vs. the energy density of a litre of oil, the availability of mineral resources to fully renew the world’s car fleet (due to the scarcity of rare metals), the challenge of the environmental footprint of an electric vehicle (beyond the sole issue of metal scarcity).
  • The availability of energy where and when the vehicles will be charged. While the impact of an EV on the electricity grid is very limited at the domestic level, the 22 million electric and hybrid vehicles expected in 2025 in Europe will significantly increase the overall demand for electricity (from 4,860 in 2020 to 47,000 GWh in 2025).That will require both grid reinforcement, more energy and moreover a smarter way to manage load to balance usage with energy availability.
  • Finally the deployment of a dense network of charging stations (EVCS) to provide a solution to the consumer in mobility.

Basically the EVCS network will be efficient if it is deployed as a global ecosystem fitting with consumer needs in four main applications:

  • Charging “at home” (90% of EV loads are today done at home, individual or collective);
  • Charging “at work” (tertiary or institutional buildings, factories,..);
  • Charging “in the city” (shops, restaurants, public parking,…);
  • Charging “in journey” (highways).

Each of this application obeys to its own constraints regarding economical cost of deployment, expected time for loading, competition with other vehicles “in queue”, energy billing to the user… Whatever the type of charging solution to be offered (in AC for the majority of needs or DC for fast charging), it will impose significant constraints on the electrical network that needs to be anticipated.

This large and complex ecosystem to deploy in a decade will require major investments but also strong innovation for a maximized installation scalability and smart energy management.

Partnerships and innovation are key

To illustrate this challenge of innovation, we can highlight for instance 2 projects involving Nexans R&D teams in partnership with Enedis in the last years:

  • “BIENVENU” project: How to propose scalable and economical Charging infrastructure in collective housing buildings designed far before Electrical Vehicle rising (only 2% equipped in 2022 in France, for ~45% of population living in collective housing) ?
  • “SMAC” project: How to create technological conditions to allow Vehicule-to-Grid (V2G) to inject the energy stored in EV batteries in the grid during the peaks of energy consumption or to compensate intermittent energy production from renewable sources?

Nexans also propose with its partner e-Novates a complete range of AC charging stations from 7 to 22 kW designed to fit various indoor/outdoor applications for Business or Public customers.

This product range will be entirely renewed in 2023 with new models fast to install and compatible with the new standard ISO 15 118. In parallel will be introduced the new version of Nexans scalable cabling solution “NEOBUS”, designed in partnership with MICHAUD, dedicated to underground parking with specific fire safety risk integrated.

Nexans is therefore a key player in this evolution of the electric vehicle market. The new solutions proposed will greatly facilitate the daily life of users, both in the private sector and on public roads, and will improve the attractiveness of these new vehicles.

It is clear that the elements of differentiation are the key factors of innovation:

  • for vehicles, overall design, autonomy linked to battery power and efficiency, and reliability over time are differentiating factors;
  • for recharging infrastructure equipment, we believe that the main differentiation criteria are not linked to hardware but to the digital layer which allows monitoring of the charging stations, interfaced with payment methods, and applications which improve the customer experience. The second area of differentiation is the ease and speed of installation of the kiosks and their connection to the electrical network.

To limit the impact on the environment

The deployment of electric vehicles and their growing share in mobility will have a significant impact on reducing global warming, provided of course that decarbonised electricity is produced and used. However, it is also important to consider the impact of electric vehicles on resources, particularly copper. In 2020, production was 21 Mt for an almost equivalent consumption. Demand will accelerate due to electrification and particularly electric mobility.

In concrete terms, a traditional thermal vehicle requires 20kg of copper, a hybrid vehicle needs twice that amount, 40kg, and an electric vehicle requires 80kg of copper on average, i.e. 4 times more than a conventional vehicle (this amount can reach up to 200kg for certain models like Tesla).

20kg

of copper are required for a thermal vehicle

40kg

of copper are required for a hybrid vehicle

80kg

of copper are required for an electric vehicle

To this consequent increase in metal dedicated to electric vehicles, we can add the copper needed for the recharging infrastructure, the AC and DC recharging equipment, but also the connection system to the electrical network. A conservative estimate is that 3Mt of metal will be needed for this transition.

To limit the impact of the electricity transition on copper resources, it is necessary to accompany the change by a copper recycling chain and the establishment of a circular economy ecosystem.

Buckle up! Frédéric Lesur is about to take us on a test drive with Thibault Dupont. Electric vehicles and charging stations, their build, and the future challenges that lie down the road – it’s all in this episode of What’s Watt.

Cyrill Million

Authors

Cyrill Million is in charge of Electric Vehicle Charging Solutions department, part of Nexans Power Cable & Accessories BU.

Cyrill joined Nexans in 2021 as Marketing & Strategy manager with mission to amplify Nexans position on energy transition markets and to promote innovative solutions to Nexans key partners.

He holds a Master of Aeronautics Engineering from Supaero, France.

David Myotte

David Myotte is Marketing and Strategy Manager in the Power Distribution Cables & Accessories Business Unit of Nexans.

After 15 years in automotive industry and 7 years in steel industry, mainly in sales positions, he joined Nexans beginning of 2020, in charge of Nexans Accessories Sales in North and South Europe. In his current role, on top of elaborating marketing strategies and new offers aiming at enhancing Nexans customers’ experience and satisfaction, he is responsible of the sales of Nexans Electrical Vehicle Charging Stations (EVCS).