After more than a century in the shadows, Direct Current (DC) power could be set for a comeback.
The closing years of the nineteenth century saw a fierce battle to establish the best method for supplying electricity to consumers, with DC on one side (promoted by Thomas Edison) and AC on the other (backed by Nikola Tesla). DC lost, and the world has been dominated by AC ever since.
The story might have ended there but for two things. First, DC is remarkably efficient for long-distance bulk power transfer – indeed, it has been used in this role for decades. Second, more and more of the electrical devices we use are natively DC – everything from your mobile phone to LED lights and electric cars.
All of this is leading to a reappraisal of DC for transmission, distribution and even final consumption by electricity users. So how might this work in practice?
DC transmission
Transmission is the bulk transfer of electrical energy, typically over long distances. This is achieved using overhead transmission lines or underground (or subsea) cables. Using high-voltage DC (HVDC) for transmission instead of high-voltage AC has a number of advantages.
First, less material is needed. This is because DC requires only two conductors (AC needs three). Second, electrical losses are lower with DC because only active power is transferred (by contrast, AC transfers both active and reactive power). Third, the possible length of transmission links is much greater with DC thanks to the absence of reactive power.
HVDC is a proven technology – and it is getting better all the time. Recent developments include voltage source converters (VSCs) and improved transmission capacity for cables. This is achieved with higher voltages, higher operating temperatures, bigger conductor cross sections and the introduction of extruded technology. All of this means that the footprint and cost of HVDC projects is falling relative to the energy transferred. In short, HVDC transmission is becoming much more competitive.
A bright future for HVDC
Two important market trends are driving increased interest in HVDC transmission. The first is the growing demand for electricity interconnectors. These span oceans and link the grids of nations and regions. The second driver is subsea export cables for the growing number of offshore wind farms.
To date, some 15,000 km of HVDC submarine cables have been installed, using both MI (mass impregnated) and XLPE (extruded) cable technology. An additional 20,000 km of HVDC interconnectors are expected to be deployed by the beginning of 2030, not including offshore wind farm export cables. The installed base of extruded cables is expected to increase and equal the length of mass-impregnated cables by the end of this decade. Manufacturers of HVDC submarine cables are positioning themselves to capture the market by investing in more production and installation capacity.