Sustainable buildings for a brighter future
Electrification of tomorrow
12 October 2023
6 min
Sustainable buildings

Today, governments from around the globe with bold commitments to reduce greenhouse gas (GHG) emissions are pressuring the construction and building sector to reduce its carbon emissions and consumption of raw materials.

And for good reason. Commercial and residential buildings are responsible for almost 40% of greenhouse gas emissions (GHG) and consume 30% of final energy globally. Decarbonizing the building and construction sector is critical to achieving net zero emissions by 2050. Doing so will need fundamental changes in how buildings are designed, built, and operated worldwide. This shift will require the sector to favor more environmentally friendly building materials and practices, institute better material efficiency strategies, and reduce raw material usage.

Innovative construction materials

The move to innovative low-carbon building materials is essential to reduce the building and construction sector’s environmental impact. Concrete is not only the most commonly used building material but is responsible for 8% of global GHG emissions.

A viable alternative to traditional concrete is low-carbon brick made from recycled materials or traditional clay bricks fired in a low-carbon process using biogas from waste, biomass methanation, or solar and wind power.

Construction materials company Saint-Gobain, for example, is leading the way in the production of sustainable, low-carbon products. Earlier this year, the global company announced the production of zero-carbon plasterboard at its modernized plant in Fredrikstad, Norway. Decarbonizing the manufacturing process was possible by switching from natural gas to hydroelectric power, thus avoiding 23,000 tons of CO2 emissions annually. In addition, the company is the first in the industry to produce zero-carbon flat glass, made possible by using 100% recycled glass (cullet) and 100% green energy produced from biogas and decarbonized electricity.

Eco-friendly materials such as hemp and flax are viable alternatives for reducing the sector’s environmental impact. Cavac Biomatériaux, specializing in the industrial application of plant fibers, manufactures insulation from hemp and flax.

Better material efficiency strategies

The 2022 Global Status Report for Buildings and Construction foresees global consumption of raw materials to double by 2060. By implementing better material efficiency strategies, there is a massive potential for the building sector to reduce its GHG emissions, according to the report’s panel.

Furthermore, material efficiency strategies, including recycled materials, in G7 countries could reduce emissions in the material cycle of residential buildings by more than 80% in 2050. Globally, the Ellen MacArthur Foundation estimates that the circular economy would reduce CO2 emissions from building materials by 38% in 2050.

A key initiative within the European Union’s Circular Economy Action Plan (CEAP) is the Digital Product Passport (DPP). This initiative aims to make sustainable products the norm in the EU by facilitating transparency throughout the value chain and boosting circular business models. Instituting a circular business model in the building and construction sector is key to reaching important sustainability targets.

Reducing raw materials usage

Construction materials and products are estimated to consume 50% of all raw materials extracted from the Earth’s crust, and demolition activities represent 50% of all waste generated. To reduce its cables’ environmental impact, Nexans increasingly uses low-impact materials throughout the production value chain.

It is projected that the availability of important raw materials will continue to decrease in the years to come. An example is copper, an essential component of electrical cables and wiring due to its high conductivity and strength. Because copper mining can no longer meet global demand, 40% of copper production comes from recycled copper.

For over 35 years, Nexans has been recycling copper and aluminum scrap as part of its Sustainable Development policy to reduce raw material usage and promote a circular business model. In 2008, Nexans and SUEZ launched RECYCÂBLES, France’s leading recycler of cables and non-ferrous metals. The joint venture processes 36,000 tonnes annually of cables, generating 18,000 tonnes of metal granules and 13,000 tonnes of plastic. The combination of leading-edge technologies enables the generation of 99.9% pure copper granules.

Today, Nexans uses up to 15% of recycled copper in new cable manufactured and is on target to use recycled aluminum by 2024. Employing recycled copper, aluminum, and plastics provides Nexans’ customers a sustainable product without compromising quality.

Environmentally friendly building materials

With the global floor area expected to double by 2060, implementing energy-efficient and environmentally friendly building materials and practices is vital.

Nexans is working to improve the impact of its products by sourcing components that meet reduced energy usage guidelines established by the company’s Corporate Social Responsibility (CSR) directives. In addition, Nexans’ R&D product development aims to protect the environment and human health by managing the chemical substances used in its manufacturing processes and ensuring that all new projects take into account the end product’s environmental footprint. For example, starting in 2025, a large part of cables manufactured at the Nexans facility in Autun, France, will be halogen-free to reduce their toxic gas emissions in the event of a fire.

Energy-efficient, zero-carbon buildings will require looking at how building materials are designed, made, and used. This will mean examining the value chain and changing how we make, use, and reuse all materials—from the actual product to the packaging and transportation—to reduce the industry’s overall environmental impact.

Christophe Demule

Author

Christophe Demule is the Building Innovation Director at Nexans, working within the Innovation Service and Growth Department. Previously, he held the position of Engineering VP for our Business Group Industry Solutions & Projects, bringing with him extensive experience in manufacturing. In 2021, he designed and launched the implementation of the Building Innovation Strategy with the creation of six Design Labs worldwide. With a focus on User experience by using the Design Thinking Methodology, Innovations are solving pain points of our customers and bringing added value to all stakeholders.

Unleashing the power of DC buildings
Electrification of tomorrow
25 July 2023
7 min
Direct current powered buildings

With the global demand for electricity expected to increase 20% by 2030 and the increasing pressure to transition to renewables, the War of the Currents is once again in the spotlight.

Back in the 1880’s, when Westinghouse and Edison were battling for their respective approach to electricity distribution, the infrastructure to transmit direct current (DC) power was at the time inefficient and expensive. And as such, Nikola Tesla’s approach using alternating current (AC) ultimately won. And since that time, our current electrical infrastructure is dominated by AC technology. But times have changed since then.

Today, over 70% of devices in a building need DC to operate. A conversion from AC to DC results in energy wastage of upwards to 20%, according to EMerge Alliance. Reducing the need to convert has profound implications regarding energy savings and environmental impact. And this is why eliminating or reducing AC to DC conversion in buildings is critical.

The International Energy Agency reports that in 2021 the operation of buildings accounted for 30% of global final energy consumption and 27% of total energy sector emissions. As a result, governments are placing increasing pressure on the building sector to move towards ambitious energy performance directives to reduce the carbon footprint of buildings. Directives such as “nearly zero-energy buildings” in the U.S. and in Europe aim for buildings to require a low amount of energy provided by renewables produced on-site or nearby.

Directives like these, along with the growing usage of self-consumption, onsite battery storage and DC-powered devices from LED lighting and heating, ventilation and air-conditioning (HVAC) systems to electric vehicles (EV) and electronic devices, are driving the building industry to switch to DC power distribution.

The move towards to reliable DC cable systems for DC microgrid

In terms of electric power distribution, there is a progressive shift towards DC due to the growing interest in low voltage (LV) and medium voltage (MV) microgrids reflecting the fundamental changes in how electricity is generated, stored, and consumed. We are convinced that AC and DC networks will coexist with a significant share.

However, expert knowledge of the behavior of the insulation system is vital to ensuring the reliability of LV cables and accessories in buildings.

The behavior of LVAC cable systems is largely known but not for LVDC.

One of the focuses of Nexans’ R&D center AmpaCity is to optimize our cable design: we perform this optimization, which is achieved by understanding the electrical behavior of insulation systems under DC stress conditions and the impact of DC current on cable breakdown, ageing and corrosion. We’re also committed to investigate on more effective polymers for DC cable insulation with lower environmental impact than AC classical solution.

DC building transformation is a Fact

As mentioned earlier, power generation is moving closer to demand. Rooftop solar photovoltaics are becoming more commonplace. According to the EU Solar Energy Strategy, EU will make compulsory the installation of rooftop solar in new public and commercial and residential buildings. Furthermore, PV panels produce natively DC. In addition to the widespread implementation of on-site battery storage for uninterrupted power supplies (UPSs) used by businesses and data centers to maintain supply security, along with the growing deployment of battery energy storage systems (BESSs) for grid balancing.

Another major change in recent years is the growth of electric vehicles (EVs) and the need for DC charging stations in commercial, residential, and office buildings. With global policies encouraging and mandating the move to EVs, the market for chargers is growing rapidly, at an estimated compound annual growth rate (CAGR) of 29% from 2023 to 2050.

Local DC-power distribution

Distributing DC power locally throughout a building provides important benefits in safety, costs, and device reliability.

From a safety point of view, AC power is inherently more dangerous. In fact, the risk of electrocution of the human body by DC is considered to be lower than with AC, as the total impedance of the human body decreases as the frequency increases. And for high growth categories such as EV chargers, the move to DC versus AC chargers means better overall safety.

The data center sector accounts for around 4% of global electricity consumption, and is set to continue growing. Improving energy efficiency in this sector is crucial. For example, cost savings in electricity-intensive buildings such as DC-powered data centers can represent savings of 4-6% compared to conventional AC installations.

In addition to the reduction in electrical losses linked to the transport of electricity in cables, there is also the reduction in AC-DC conversion losses.

Providing DC devices (loads) with DC power eliminates power losses incurred through conversion and thus eliminates an estimated 5 to 20% in energy waste. In addition, the AC to DC conversion process at the device level can shorten its operating life. For example, distributing DC power directly to a LED fixture (thus avoiding the AC to DC conversion) can substantially extend its operating life. Plus, distributing DC power locally reduces the cost and footprint of AC to DC adapters and converters.

Transition to DC-powered buildings

In conclusion, DC power distribution in buildings is on the horizon, but change will take time. Even with a move to DC microgrids, there are other significant challenges to be addressed in the coming years, notably the uptake by industry professionals, many of whom need to become more familiar with DC power and its benefits. This is due to the long experience and knowledge of AC power.

Furthermore, advancement in building standards and codes which address specifications for DC-powered devices is required, as with the further analysis of the cost-effectiveness of DC power distribution in retrofit and new construction.

Cables are a fundamental part of a building’s electrical infrastructure and are a critical player in the transition to DC-powered structures. The buildings of tomorrow will be smart, connected, sustainable, and powered by DC. Nexans is committed to this transformation by manufacturing specific cable systems compatible with these new infrastructures. And our strategic partnerships and involvement in key industry groups are helping to make the transition to DC-powered buildings a reality.

Lina Ruiz

Author

Lina Ruiz is responsible for the LVDC, MVDC and new architectures technical platforms for Nexans within the Research and Territories Techno Centre.

She previously worked as a project manager and technical innovation team leader in the field of renewable energies. In 2023, she joined Nexans to accelerate the exploration program on direct current for low and medium voltage. In her current role, she is responsible for providing new and differentiated solutions in the field of direct current.

Digital solutions for building construction: A path to progress
Electrification of tomorrow
18 July 2023
5 min
Digitalization in building construction

A wave of change is happening in the building industry. As we’ve witnessed in the last couple of years, the sector once referred to as “brick and mortar” is bracing itself for a digital revolution. Traditionally slow to embrace new technologies, resulting in decades-long productivity stagnation, digitalization of the $7.5 trillion building construction market is long overdue.

In the 2022 McKinsey global survey of over 500 executives in the building products sector, an overwhelming 70% expected to increase their investment in innovation and R&D. So much so that survey respondents ranked digital design tools such as building information modeling (BIM), software solutions and automation ahead of sustainability.

Investing in innovation and R&D is expected to be the key market differentiator in the next three to five years – rippling across the entire value chain and driven in part by climate change and productivity.

Digitalization of the construction and building sector

Productivity has long been a major issue in the construction sector, with the average capital project running 20 months behind schedule and a staggering 80% over budget. The industry is increasingly applying digital tools across the entire spectrum, from design and construction to operations, but at varying levels depending on the construction phase.

Improving productivity necessitates closing the gap between product and document management systems to simplify and increase technician productivity.

Even as gains have been made, there is vast potential to further improve productivity through increased usage of digital technologies in all phases of the processes—design, construction, and operations.

With increasing government regulation for the industry to decarbonize, digitalization is a crucial enabler in reducing the environmental impact of construction projects globally.

Electrification of buildings

As the electrification of buildings grows and expands in the years to come, ensuring efficient implementation of cabling solutions is essential to safety and productivity gains. Narrowing the gap between productivity management tools and document management systems is one key to easing the work of electricians. As skilled labor shortages continue, further enhancements in information access and traceability are vital.

The digital connection between the physical product and its accompanying documentation is lacking in the industry. This is often the case with electrical products, where installers seldom have easy access to up-to-date documentation. The lack of traceability means details such as who installed the product are often lost once the initial work is completed.

As buildings move from fossil fuels to renewable energy, the demand for skilled electricians will increase, along with the need for tech-related professionals to manage the influx of digital systems and tools required to meet this industry shift.

Foundation of the digital revolution

As the building sector moves forward in its digital transformation, Building Information Modeling (BIM) will increasingly become the standard and foundation of construction projects. This bridging of physical building elements with their accompanying digital format (referred to as BIM content) facilitates the working processes throughout a building project’s value cycle from planning and design to construction and operations.

BIM content provides architects, designers, and builders easy access to essential product information such as installation instructions, energy consumption, eco-labels, operation costs, and product lifecycle. Nexans is working with BIM providers to integrate its offerings so as to facilitate electrical cable installation, maintenance, and safety.

As newer technologies such as drones, robotics, and 3D printing become more commonplace on construction sites, ensuring that BIM is the foundation of the construction industry’s digital strategy is critical. According to McKinsey, the move to 5D BIM, combining 3D physical models of buildings with cost, design, and scheduling data, could result in a 10% savings in contract value by detecting clashes, reducing project life span, and potentially reducing material costs by 20%.

Navigating analog to digital

The shift from analog to digital documentation and traceability is key to moving the building products market forward. And thus, reversing the industry’s fragmentation to ensure better productivity, cost efficiency, and safety. This is especially important in the electrification of buildings to provide safe installation and operations.

Thanks to its cloud-based app, Evermark™, Nexans provides its clients easy access to information about the physical product installed, such as follow-up of maintenance, electrical drawings and product data. Thanks to NFC tags, Evemark™ provides a digital connection between the physical product and the necessary documentation, and ensure full traceability of the electrical installation throughout the product’s lifecycle—from implementation phases to maintenance and replacement. It provides immediate access to pertinent information on- and off-site, reducing cost and time while increasing productivity.

With new technologies come new possibilities. The key is ensuring that future digital tools integrate seamlessly for a heightened level of customer satisfaction.

Jenny Nyström

Author

Jenny Nÿstrom is Nordics Design Lab & Innovation within Nexans. She has been working in the cable industry since nearly 20 years, being involved in the domain of product marketing and product management, mainly for Building, Telecom and Utility sectors.

Fire safety in buildings: Holistic certification for enhanced protection
Electrification of tomorrow
04 July 2023
7 min
Fire safety and buildings

Today, a fire breaks out every 30 seconds in Europe. 25% of fires are due to electrical failures, representing 275,000 fires yearly. With more than half of the world’s population living in urban areas and the demand for electricity increasing, ensuring the electrical safety of buildings is critical.

A vital step to ensuring the fire safety of buildings is taking a holistic approach to testing and certifying electrical cables with their associated components.

A key to this holistic approach is understanding how the shifts in electrical consumption and increased load requirements impact the fire safety of both new and older buildings. An estimated 25% of fires are caused by electrical failures or obsolete, overloaded installations. And this statistic worsens in emerging markets where 80% of building fires are due to non-compliant cables.

In essence, fire safety is a growing concern globally, and ensuring the safety of the building’s occupants is vital.

Electrification of buildings

Electrical cables are the backbone of buildings. The typical office building houses more than 200 kilograms of electrical cables per 100 square meters. Despite their omnipresence, they are unfortunately often forgotten. In older buildings, this can and often does lead to negligence in retrofitting outdated electrical cables and systems to ensure modern safety standards are met. And, with increasing electricity demand, installations in older buildings are often undersized and thus increase the risk of electrical fires.

Today, most older buildings require significant renovations to ensure their electrical systems are compliant with the rules and can adequately handle the loads required in offices, and residential, public and government buildings.

When it comes to new usages, the electrical architecture has to be considered at the early stage to ensure safety is tackled as a whole. There are still too much datacenters burning all over the world putting at risk the economy and sometimes life despite the availability of integrated solutions. Furthermore, photovoltaic installations are also at risk…

Most buildings run on several fuels. They obviously use electricity for lighting systems and electrical appliances, but they also consume fossil fuels such as natural gas or propane for heating systems. This persistent dependence on fossil fuels makes buildings one of the biggest sources of the pollution that is warming the planet.

The terms “electrification of buildings” and “decarbonization of buildings” all describe the transition from fossil fuels to the use of electricity for heating and cooking. In addition to heating and cooling systems using the latest generation of electric heat pumps, there will also be charging points for electric vehicles, which will systematically equip buildings in the future and help to reduce a major source of carbon emissions in developed economies: mobility.

The goal of such a transition: all-electric buildings powered by solar, wind and other zero-carbon electricity sources. In other words, it’s not just a question of increasing the level of electrification of buildings, but also the reliability of their electrical networks.

Fire safety starts with a holistic approach to certification

Cables are seldom the source of a fire, but due to the inherent nature of electrical arcs, their interconnections with electrical equipments and components are prone to igniting a fire. Understanding the interactions between these components is instrumental in ensuring better fire safety in buildings.

Today, most standards and certification bodies focus on validating each component in isolation. This lack of a holistic view of the interactions between electrical components within a building structure must be a concern within the industry. Fortunately, frameworks such as the National Fire Protection Association (NFPA) & Life Safety Ecosystem™ aim to identify the components that must work together to minimize fire risk.

Changing the industry mindset from the certification of each component to consider the interactions of components is fundamental to ensuring their compatibility and overall safety. This holistic and systems approach ensures that proper testing is done to validate that the overall system performance is achieved and certified. And that testing takes into account the usage of components in a real-life setting.

Moving to a systems approach for certification will require suppliers to work together in bringing to market thoroughly tested integrated system offerings that match the performance requirements of customers and failsafe installation processes. This will mean implementing plug and play and modular electrical products that reduce the risk of on-site installation errors and ensure component compatibility.

Nexans’ Fire Safety compatibility approach

Nexans aims to provide the highest electrical and fire safety levels by ensuring its cables and wires combat fire propagation, reduce smoke and hazardous emissions during a fire, and maintain the continuous operation of fire safety systems. These are the fundamental pillars of Nexans’ Fire Safety solutions and services.

To reduce hazardous emissions, for example, Nexans Fire Safety’s offering focuses on Low Fire Hazard (LFH) cables and forgoing outdated materials such as PVC.

Our mission to provide innovative products and solutions that meet the safety needs of our customers extends to our dedication to moving the industry to systems compatibility testing and certification. This is an increasingly important opportunity to ensure the fire safety of new solutions.

For example, Nexans recently took a system approach in developing an electrical vehicle (EV) charging infrastructure offering. To do so, we selected key partners to build the integrated solution, thus proving this approach’s viability.

The challenges and opportunities

Creating safer buildings will mean fundamental mindset shifts. For customers, it will mean moving their purchasing decisions from solely component cost to a total cost-of-ownership (TCO) approach encompassing fire risk management.

The industry must also encourage collaboration between key partners to ensure an overall benefit to all stakeholders, in addition to industry certification and performance standards with an active participation of insurance organizations.

In the coming years, new offerings must take a solutions approach to further demonstrate their benefits to customers. These benefits include better fire protection, safety, and ease of installation.

In addition, an integrated fire safety system approach to electrical components aligns with the industry’s move to Building Information Modeling (BIM), digital twins, and IoT technologies.

Franck Gyppaz

Author

Franck Gyppaz is the head of the Fire Safety Systems Design Lab at AmpaCity, the Nexans Innovation Hub. He has been working in the cable industry since more than 20 years, being involved in the domain of fire safety and developing innovative technologies, cable designs and a fire test lab with the ISO17025 accreditation and UL certification. He is also active in the field of standardization members of different groups at national and international levels.His position leads him to manage relationships with all the actors of the fire safety ecosystem to propose integrated systems to our customers.

Transforming buildings industry with
3D printing and modular construction
Electrification of tomorrow
27 June 2023
9 min
3D printing & modular wiring in buildings

The building and construction industry is increasingly embracing newer technologies and solutions to meet rising floor space demand, stricter sustainability and safety standards, increasing costs, and skilled labor shortages.

As the demand for residential, commercial, industrial, and high-safety buildings is projected to grow in the coming years, meeting demand will require more efficient building construction methods. Those gaining in popularity are 3D printing, drones, robotics, and modular construction.

At the heart of this evolution in the building and construction industry is the increasing demand for electricity, which is expected to grow by 20% by 2030. This means future construction must take into account more electrical cables, connectors, systems, and subsystems, while ensuring smarter and safer installation and operations.

3D printing – from novelty to mainstream in reshaping buildings

Going from curiosity to a viable tool of the building trade, 3D printing, also known as additive manufacturing, is reshaping the industry and demonstrating its viability to dramatically reduce construction time and costs. Moreover, the benefits extend beyond on-site but to off-site (prefabrication) of building components, adding yet another major application and appeal to its uses.

One of the more progressive moves to 3D printing technology is the Dubai 3D Printing Strategy which aims for one-quarter of Dubai’s buildings to be 3D printed by 2030. Examples include the 2,600-square-foot office complex housing the Dubai Future Foundation (DFF) headquarters and the Dubai Municipality completed by robotic construction company Apis Cor.

Benefits of 3D printing in construction have been highlighted during the 2023 Construction Technology ConFex:

  • Speed and efficiency: The layer-by-layer additive manufacturing process of 3D printing can dramatically reduce construction time compared to conventional approaches, enabling the project to be completed more quickly.
  • Reduced costs: By optimizing the use of materials and reducing labour requirements, 3D printing can reduce construction costs.
  • Customization: 3D printing makes it possible to create custom designs and complex architectural elements that would be difficult to achieve using traditional construction methods. Complex and unique shapes can be easily created using 3D printing, allowing architects and designers to explore innovative design possibilities.
  • Sustainable construction: Additive manufacturing can minimize material wastage by using only as much material as is needed, promoting sustainability in construction.

However, a number of challenges remain:

  • Limits of scale and size: Scaling up 3D printing for large-scale buildings or infrastructure projects remains a challenge. Current technologies may not be able to efficiently produce structures beyond a certain size.
  • Structural integrity and quality assurance: It is essential to guarantee the structural integrity and long-term durability of 3D printed components. Rigorous testing and quality assurance processes are required to meet safety standards.
  • Integrating electrical systems and other services into 3D-printed structures requires careful planning and co-ordination to ensure their smooth operation.
  • Regulatory and legal considerations: As 3D printing in construction becomes more widespread, regulatory frameworks and legal standards must be established to meet safety, liability and compliance requirements.

Robots and drones—redefining the building construction site

The construction robotic technology is going from sci-fi to reality in record-breaking time. A report from MarketsandMarkets expects the construction robots market to reach $166.4 million by 2023, representing a 16.8% compound annual growth rate (CAGR) from 2018 to 2023. And an IDC report published in January 2020 forecasts that demand for construction robots will grow about 25% annually through 2023.

Applications range from robots that can lay bricks and weld to self-driving diggers and drones that can survey and map construction sites and monitor progress. Most foresee robots assisting construction workers in repetitive and dangerous tasks while helping the industry tackle productivity and labor shortage challenges.

An example is Hilti’s semi-autonomous job site robot, Jaibot. Designed to assist mechanical, electrical, and plumbing (MEP) contractors, Jaibot uses BIM data to locate and drill holes for interior electrical and plumbing installations.

In the past couple of years, technologies not immediately embraced by the construction industry are now rightly finding their place, going from curiosity to a viable tool in the building trade.

Modular wiring—transforming the electrical landscape

With its roots dating back to the mid-’90s, Modular wiring revolutionizes the electrical landscape by replacing traditional installation methods with a convenient plug and play technology. It provides a quick, safe, and easy solution for connecting lighting and power circuits from the distribution board to the final connection point. Initially used in high-safety buildings like healthcare facilities, modular wiring is now widely utilized in schools and government buildings due to challenges such as labor shortages and increased infrastructure demands.

Over the past 30 years, modular wiring has gained popularity as a cost-effective and user-friendly alternative to traditional electrical installation. It offers numerous benefits throughout the entire construction process, from conception and design to operation and end-of-life. This has instilled confidence in governments, builders, and electrical contractors regarding its safety, cost-effectiveness, and efficiency for both new construction and upgrades.

To meet the increasing demand for floor space, architects and builders are relying more heavily on modular building techniques. According to a recent study by MarketsandMarkets, the global Modular Construction Market size is projected to grow from $91 billion in 2022 to $120.4 billion by 2027, up 5.7% from 2022 to 2027.

This trend is driven by the need for innovative approaches and the ongoing shortage of skilled labor. Modular wiring, along with other subassemblies and components, plays a vital role in enhancing productivity and performance while providing a comprehensive view of costs that includes factors like end-of-life, waste, and safety. With the construction industry shifting towards prefabrication and off-site construction, modular wiring will continue to grow in importance to meet government requirements, reduce costs, enhance quality and safety, and minimize environmental impact.

Wiring the future

Moving forward, the industry’s biggest challenges are changing attitudes about adopting newer construction technologies and methods and more encompassing metrics.

This means that electrical cables are not seen as a commodity and, as such, not only selected on price but on type, materials, safety, and more. This changing of metrics sees performance, risk, and sustainability as essential criteria in the overall measurement of a building project.

In Oceania, Nexans supports its customers as they embark on the energy transition journey, offering a complete modular wiring solution. This solution is an efficient and sustainable way to minimize electrical site waste and reduce the cost of installation. Moreover, it encompasses switchboards, corridor wiring, and in-room wiring through to end-of-circuit accessories.

With building information management and design moving to more detailed phases earlier in the conception stage, the inclusion of modular wiring is gaining its place. In addition, supply concerns and rising material costs are increasingly driving electrical contractors to include modular wiring in bids and the design phase.

The future of modular wiring solutions is strong and will continue to gain in popularity due to the benefits of cost-savings, reliability, ease of installation, safety, quality, and sustainability.

 

Often regarded as a commodity industry, the construction sector is no exception to the trend towards new technologies and innovations. It has a multitude of tools and solutions that are revolutionizing not only processes, but also ways of working and preparing a site. Numerous innovations are already proving indispensable in improving the organization of worksites, the quality of work and the efficiency of teams. The result is a whole new way of designing projects and completing them in record time.

Sustainable development, improved worksite safety, technological solutions to save time and money, digital tools to build more environmentally-friendly structures… Innovation in the building industry is everywhere.

Christophe Demule

Author

Christophe Demule is the Building Innovation Director at Nexans, working within the Innovation Service and Growth Department. Previously, he held the position of Engineering VP for our Business Group Industry Solutions & Projects, bringing with him extensive experience in manufacturing. In 2021, he designed and launched the implementation of the Building Innovation Strategy with the creation of six Design Labs worldwide. With a focus on User experience by using the Design Thinking Methodology, Innovations are solving pain points of our customers and bringing added value to all stakeholders.