Smart Accessories: unlocking electrical grid reliability and performance
Electrification of tomorrow
25 July 2025
7 min
banner-smart-accessories

With electrification accelerating at an unprecedented rate, electrical grids built more than thirty years ago are now under tremendous strain. Many are outdated and struggle to handle increasing demand during extended periods while maintaining the expected levels of efficiency and reliability.

In this increasingly strained environment, every component of the grid matters. Yet, some of the most critical (and vulnerable) components often remain unnoticed.

 

While attention is often focused on cables and transformers, the most overlooked and failure-prone elements of electrical grids are the accessories that silently connect everything.

More than 70% of distribution grid failures occur at junctions; but most utilities still rely on inspections with limited visibility.

These hidden critical links are often buried beneath city streets and deep under the ocean floors, silently carrying power. When they fail, the consequences include costly repairs, extended downtime, and widespread service disruptions. Preventing this costly domino effect is a top priority for grid operators today.

So, why do these critical connection points fail in the first place, and more importantly, how can they be avoided?

Accessories: the hidden cause behind grid failure

It is often mistakenly assumed that electrical grid failures are due to faulty cables and transformers. But in reality, it is the accessories (cable connectors, joints, and terminations) that account for a disproportionate share of failures.

These components degrade over time due to thermal fatigue, mechanical stress, vibrations, moisture ingress, and, in many cases, improper installation practices such as misalignment or over torque. Pinpointing the location of a failure is notoriously difficult. Limited visibility and lack of diagnostic data make troubleshooting time-consuming and costly.

As an example, an MV cable connector failure can cost, on average, between €10,000 and €50,000 to repair.

3 reasons why accessory systems fail

These failure mechanisms underscore why accessories, despite their compact size, harbor a disproportionate share of the operational risk within medium-voltage grids. Yet their role extends well beyond reliability concerns alone, serving as critical enablers of performance, safety, and future-ready grid modernization.

smart-accessories-illustration

The rising strategic role of accessories in modern grids

Accessories are instrumental in powering mega data centers, lighting cities, and supporting transport systems. This strain is especially evident in older accessories, many of which were never designed to support today’s continuous and elevated load demands.

According to the European Network of Transmission System Operators for Electricity (ENTSO-E), over 60% of Europe’s grid components are more than 30 years old. These aging components are expected to deliver uninterrupted power in an environment where downtime is no longer acceptable.

 

The impact of aging components on electrical grids

Across Germany, Italy, and the Netherlands, up to 80% of medium-voltage cable faults stem from defective joints and splices, as reported by national utilities (Unareti Grid Fault Analysis, 2022).

Much like the telecommunications industry before it, the energy sector must now evolve toward real-time visibility, predictive fault detection, and continuous diagnostic intelligence to meet the demands of a modernized grid.

Smart Accessories: From Hidden Weak Links to Strategic Grid Resilience Enablers

To address these vulnerabilities and modernize grid maintenance strategies, accessories are now being elevated into intelligent assets.

Despite their modest size, accessories like joints and connectors are often the weakest links in grid infrastructure. Their vulnerability is compounded by harsh environmental exposure; yet, until recently, they have been treated as passive components.

That’s now changing. As utilities grapple with aging infrastructure and the rising cost of outages, accessories are being redefined as intelligent and predictive assets. Equipped with embedded sensors and connected into digital monitoring platforms, today’s smart accessories enable early fault detection and real-time performance insights, allowing operators to shift from reactive maintenance to proactive grid management.

Utilities adopting these technologies have already reported notable reductions in outage durations, emergency interventions, and overall operational expenditures.

The Technology Powering Smart Accessories

Transforming accessories from passive components into intelligent assets requires a new generation of technologies. These innovations empower operators with real-time visibility capabilities, allowing them to anticipate failures before they occur, rather than respond after the fact.

To meet these evolving expectations, manufacturers are now delivering advanced accessory systems featuring:

  • Smart joints, terminations, and connectors equipped with embedded sensors for voltage, temperature, and partial discharge (PD) monitoring
  • Predictive dashboards that combine historical data with live grid inputs to flag emerging risks
  • Seamless integration with digital twins, mobile diagnostics tools, and SCADA platforms for comprehensive grid visibility.

Together, these technologies are shifting maintenance strategies from reactive interventions to proactive, data-driven grid optimization, enabling faster diagnostics, more accurate root-cause analysis, and fewer unexpected outages.

But what makes these smart accessories possible? At the heart of this transformation are three enabling technologies, powering the shift from passive parts to intelligent, self-monitoring systems:

3 Innovative technologies powering smart accessories

Real-world impact: how utilities leverage smart accessories

Utilities that embed smart accessories within predictive diagnostics and installation traceability frameworks are achieving tangible performance gains:

  • A Nordic operator reduced fault localization times from 48 hours to under six hours, sharply reducing costly emergency interventions and, consequently, OPEX.
  • National Grid in the UK deploys partial discharge and thermal sensors in medium- and high-voltage cable systems to reduce unplanned outages and maintain lower SAIDI (National Grid Innovation Report, 2022).
  • Alliander (Netherlands) is deploying more than 3,000 Smart Cable Guard systems (recently partnering with Nexans) across its medium-voltage grid to tackle aging infrastructure and outage risk. Field data shows that each unit prevents over 6,000 customer minutes lost annually, with fault localization accurate within 1% of cable length. Following strong results from initial pilots, the rollout supports Alliander’s broader effort to lower SAIFI and SAIDI across a 40,000 km MV network.

 A Strategic Shift in Grid Management

The evolution of accessories from passive components to intelligent assets is reshaping how utilities manage and future-proof their grids. Smart accessories now play a strategic role in boosting reliability, extending component lifespan, and reducing operation costs.

As utilities confront the twin pressures of aging infrastructure and accelerating electrification, these solutions are becoming essential to predictive maintenance and resilient network operation. This marks a broader transformation, from static systems to intelligent, self-monitoring grids.

Nexans is helping lead this industry shift, providing advanced smart accessory systems and end-to-end lifecycle support that enable grid operators to anticipate, monitor, and optimize their networks with unprecedented precision and confidence.

Discover the full suite of Nexans’s Accessories

Photo of Samuel Griot

Authors

Samuel Griot joined Nexans in 2021 as head of the electrical engineering department within Nexans Innovation, to lead a team of experts developing new innovative solutions for low, medium and high voltage applications in order to answer the future needs for the electrical grids. He was appointed early 2025 Innovation Solutions Director for the PWR Grid Market Division. He has a strong background in electrical grid architecture and switchgears. He holds a Master degree in electrical engineering from INSA of Lyon, France.

Photo of Moussa Kafal

Moussa Kafal leads the Grid Reliability portfolio at Nexans, spearheading the development and global deployment of advanced solutions that enhance the performance, integrity, and resilience of power networks. Holding a PhD in Engineering and executive credentials from HEC Paris, he bridges deep technical expertise with strategic acumen to accelerate energy system transformation. Moussa oversees key initiatives across Europe, North America, LATAM, and APAC, positioning Nexans as a leading smart grid solutions provider in a rapidly evolving digital infrastructure landscape.