Sécurité incendie dans les bâtiments : une certification holistique pour une protection renforcée
Électrification de demain
04 juillet 2023
10 min
Fire safety and buildings

Aujourd’hui, un incendie se déclare toutes les 30 secondes en Europe, dont 25 % sont dus à des défaillances électriques, soit 275 000 par an. Aujourd’hui, plus de la moitié de la population mondiale vit dans des zones urbaines et la demande en électricité est en constante augmentation : la sécurité électrique des bâtiments devient donc une priorité essentielle.

Or, pour assurer la sécurité des bâtiments contre les incendies, il convient d’adopter une approche globale du risque et de tester et certifier les câbles électriques avec les composants qui leur sont associés.

Pour mettre en œuvre cette approche, nous devons comprendre comment les variations de la consommation électrique et la hausse des exigences de charge affectent la sécurité incendie des bâtiments, qu’ils soient nouveaux ou anciens. On estime que 25 % des incendies sont causés par des défaillances électriques ou des installations obsolètes ou en surcharge. Ce chiffre est encore plus élevé sur les marchés émergents, où 80 % des incendies de bâtiments sont dus à des câbles non conformes.

La sécurité incendie est une préoccupation grandissante dans le monde entier et nous devons veiller à la sécurité des occupants des bâtiments.

L’électricité, au cœur des bâtiments

Le câblage électrique est la colonne vertébrale d’un bâtiment. Dans un immeuble de bureaux, il y a généralement plus de 200 kilos de câbles électriques pour 100 mètres carrés. Les câbles sont donc omniprésents et pourtant, ils passent généralement inaperçus. Dans les bâtiments anciens, il n’est pas rare de constater des négligences dans la mise à niveau des câbles et des systèmes électriques obsolètes au moment des mises aux normes de sécurité modernes. Sans compter qu’avec la hausse de la demande en électricité, les installations des bâtiments anciens sont souvent sous-dimensionnées, ce qui renforce encore le risque d’incendies d’origine électrique.

Aujourd’hui, la plupart des bâtiments anciens nécessitent d’importantes rénovations pour que leurs systèmes électriques soient conformes avec la réglementation et capables de supporter les charges requises par l’activité des bureaux, des bâtiments publics et résidentiels.

Nous savons aujourd’hui que pour assurer la sécurité de l’ensemble d’un bâtiment, l’architecture électrique doit être prise en compte dès les premières étapes de la construction. Dans le monde, il arrive encore trop souvent que l’économie soit menacée par des incendies dans des datacenters alors qu’il existe, souvent, des solutions intégrées. Soulignons que les installations photovoltaïques sont, elles aussi, exposées au risque.

La plupart des bâtiments fonctionnent avec plusieurs combustibles. Ils utilisent évidemment de l’électricité pour les systèmes d’éclairage et les appareils électriques, mais ils consomment également des combustibles fossiles tels que le gaz naturel ou le propane pour les systèmes de chauffage. Cette dépendance persistante à l’égard des combustibles fossiles fait des bâtiments l’une des plus grandes sources de pollution qui réchauffe la planète.

Les termes “électrification des bâtiments” et “décarbonation des bâtiments” décrivent tous la transition des combustibles fossiles vers l’utilisation de l’électricité pour le chauffage et la cuisine.

Outre les systèmes de chauffage et de refroidissement utilisant des pompes à chaleur électriques de dernière génération, des bornes de recharge pour véhicules électriques équiperont systématiquement les bâtiments à l’avenir et contribueront à réduire une source majeure d’émissions de carbone dans les économies développées : la mobilité.

L’objectif d’une telle transition : des bâtiments entièrement électriques alimentés par l’énergie solaire, éolienne et d’autres sources d’électricité sans carbone. En d’autres termes, il ne s’agit pas seulement d’augmenter le niveau d’électrification des bâtiments, mais aussi la fiabilité de leurs réseaux électriques.

Pour une approche plus globale de la certification

Les câbles eux-mêmes sont rarement la cause première des incendies, mais ils sont exposés aux risques au niveau de leurs interconnections avec d’autres équipements, en raison de la nature des arcs électriques. Pour assurer la sécurité incendie des bâtiments, il faut donc pleinement comprendre les interactions entre les différents composants.

Aujourd’hui, les organes de normalisation et de certification s’intéressent aux éléments d’isolation de manière individuelle et non aux interactions entre les différents composants électriques, une situation qui doit alerter le secteur. Heureusement, des organes tels que le National Fire Protection Association (NFPA) & Life Safety Ecosystem™ s’attachent à identifier les composants qui doivent fonctionner ensemble pour limiter au maximum le risque d’incendie.

Pour évoluer en ce sens, il faut changer les mentalités au sein du secteur. Une approche globale et systémique permet d’effectuer des tests pour valider la performance globale du système, en se basant sur l’utilisation des composants en conditions réelles.

L’adoption d’une approche systémique pour la certification nécessite la pleine adhésion des fournisseurs. En effet, ceux-ci devront mettre sur le marché des offres de systèmes intégrés, ayant fait l’objet de tests approfondis et répondant aux exigences de performance des clients et des processus d’installation à sécurité intégrée. Il s’agira de mettre en œuvre des produits électriques modulaires et prêts à l’emploi, réduisant le risque d’erreurs d’installation sur site et garantissant la compatibilité des composants.

La compatibilité, au cœur de l’approche Fire Safety de Nexans

Nexans s’efforce d’assurer les plus hauts niveaux de sécurité électrique et incendie en veillant à ce que ses câbles et ses fils évitent la propagation du feu, limitent les dégagements de fumée et les émissions dangereuses lors d’un incendie, et maintiennent l’intégrité des systèmes de sécurité incendie. Ces principes sont le fondement des solutions et services Fire Safety de Nexans.

Pour limiter les émissions dangereuses, par exemple, l’offre de Nexans Fire Safety se concentre sur les câbles à faible risque d’incendie (LFH pour Low Fire Hazard) et sur l’abandon de matériaux obsolètes tels que le PVC.

Au-delà de notre offre de produits et solutions innovants répondant aux besoins de sécurité de nos clients, nous nous donnons pour mission de faire évoluer le secteur vers la mise en œuvre de tests de compatibilité et de certification des systèmes. C’est à la fois une opportunité de garantir la sécurité incendie des nouvelles solutions et un besoin de plus en plus urgent.

Par exemple, Nexans a récemment adopté une approche systémique dans son offre de recharge pour véhicules électriques. Nous avons sélectionné des partenaires clés pour construire une solution intégrée, ce qui nous a permis de prouver la viabilité de cette approche.

Défis et opportunités

La création de bâtiments plus sûrs nécessite un changement des mentalités en profondeur. Du côté des clients, la décision d’achat ne devra plus se fonder sur le seul coût des composants, mais aussi intégrer le coût total de possession (TCO ou cost-of-ownership) englobant la gestion des risques d’incendie.

Le secteur doit également encourager la collaboration entre les partenaires clés, pour que l’ensemble des parties prenantes y trouvent leur compte, au-delà de la certification et des normes de performance, avec une participation active des organismes d’assurance.

Dans les années à venir, les nouvelles offres devront adopter une approche axée sur les solutions, afin d’insister sur la valeur ajoutée pour les clients, notamment une meilleure protection contre les incendies, la sécurité et la facilité d’installation.

En outre, les approches intégrées des systèmes de sécurité incendie pour les composants électriques sont en phase avec l’évolution du secteur, avec la modélisation des données du bâtiment (BIM), les jumeaux numériques et les technologies IoT.

Franck Gyppaz

Auteur

Franck Gyppaz est responsable du laboratoire de conception de systèmes de sécurité incendie à AmpaCity, le pôle d’innovation de Nexans. Il travaille dans l’industrie du câble depuis plus de 20 ans, s’impliquant dans le domaine de la sécurité incendie et développant des technologies innovantes, des conceptions de câbles et un laboratoire de test incendie avec l’accréditation ISO17025 et la certification UL. Il est également actif dans le domaine de la normalisation, membre de différents groupes au niveau national et international.Sa position l’amène à gérer les relations avec tous les acteurs de l’écosystème de la sécurité incendie pour proposer des systèmes intégrés à nos clients.

L’industrie du bâtiment transformée grâce à
l’impression 3D et la construction modulaire
Électrification de demain
27 juin 2023
10 min
3D printing & modular wiring in buildings

Le secteur du bâtiment et de la construction s’appuie de plus en plus sur les nouvelles technologies et solutions pour répondre à ses différents impératifs : une demande croissante de surface au sol, des normes de plus en plus strictes en matière de durabilité et de sécurité, la hausse des coûts et la pénurie de main-d’œuvre qualifiée.

La demande de bâtiments résidentiels, commerciaux, industriels et de haute sécurité étant amenée à augmenter dans les années à venir, des méthodes de construction plus efficaces seront nécessaires. Aujourd’hui, le secteur se tourne entre autres vers l’impression 3D, les drones, la robotique et la construction modulaire.

Au cœur de cette évolution du secteur du bâtiment et de la construction se trouve la demande croissante en électricité, qui devrait augmenter de 20 % d’ici à 2030. Les constructions futures devront tenir compte de cette évolution, qui se traduira par un plus grand nombre de câbles électriques, de connecteurs, de systèmes et de sous-systèmes, mais aussi d’installations et d’opérations plus intelligentes et plus sûres.

L’impression 3D, bientôt incontournable ?

L’impression 3D, qui était encore récemment une source de curiosité, est aujourd’hui un outil crédible dans le secteur de la construction. Également connue sous le nom de « fabrication additive », cette technologie est en passe de transformer le secteur, en réduisant considérablement les délais et les coûts de construction. D’autant que les avantages de l’impression 3D ne se limitent pas à la construction sur site, mais permettent aussi de préfabriquer des éléments de construction hors site : une autre application majeure, qui renforce encore son attrait.

L’une des initiatives phares dans ce domaine est la Dubai 3D Printing Strategy, qui prône l’impression 3D pour un quart des bâtiments de Dubaï d’ici 2030. Citons par exemple le complexe de bureaux de 250 mètres carrés abritant le siège de la Dubai Future Foundation (DFF) et la municipalité de Dubaï, réalisé par la société de construction robotique Apis Cor.

Les avantages de l’impression 3D dans le secteur de la construction ont été mis en évidence lors de la conférence Construction Technology ConFex de 2023 :

  • Rapidité et efficacité : le processus de fabrication additive couche par couche de l’impression 3D peut réduire considérablement le temps de construction par rapport aux approches classique, permettant d’achever les projets plus rapidement.
  • Réduction des coûts : en optimisant l’utilisation des matériaux et en réduisant les besoins en main-d’œuvre, l’impression 3D permet de réduire les coûts de construction.
  • Personnalisation : l’impression 3D permet de créer des designs personnalisés et des éléments architecturaux complexes et uniques, difficiles à réaliser avec des méthodes de construction classiques, qui permettent aux architectes et aux concepteurs d’explorer des possibilités de conception innovantes.
  • Construction durable : la fabrication additive permet d’utiliser uniquement la quantité de matériaux nécessaire, et donc de limiter le gaspillage, pour plus de durabilité dans la construction.

Toutefois, certains défis restent à relever :

  • Limites en matière d’échelle et de dimensions : la mise à l’échelle de l’impression 3D pour des bâtiments ou infrastructures de grande dimension reste une difficulté. Les technologies actuelles ne peuvent pas toujours produire efficacement des structures au-delà d’une certaine taille.
  • Intégrité structurelle et assurance qualité : il est essentiel de garantir l’intégrité structurelle et la durabilité à long terme des composants imprimés en 3D. Des tests rigoureux et des processus d’assurance qualité sont nécessaires pour répondre aux normes de sécurité.
  • L’intégration de systèmes électriques et d’autres services dans des structures imprimées en 3D nécessite une planification et une coordination minutieuses pour garantir un bon fonctionnement.
  • Considérations réglementaires et juridiques : à mesure que l’impression 3D se généralise dans la construction, des cadres réglementaires et des normes juridiques doivent être établis pour répondre aux exigences en matière de sécurité, de responsabilité et de conformité.

Robots et drones : de nouveaux paradigmes pour les chantiers de construction

La technologie des robots de construction est passée de la science-fiction à la réalité en un temps record. Un rapport de MarketsandMarkets prévoit que le marché des robots de construction atteindra 166,4 millions de dollars d’ici 2023, soit un taux de croissance annuel composé de 16,8 % entre 2018 et 2023. Selon un rapport IDC publié en janvier 2020, la demande de robots de construction augmentera d’environ 25 % par an jusqu’en 2023.

Les robots offrent de nombreuses possibilités : ils peuvent poser des briques, souder, actionner des pelleteuses. Les drones autopilotés sont capables de parcourir et de cartographier les chantiers de construction et d’en surveiller l’avancement. Il est communément admis que les robots dispenseront les ouvriers d’effectuer certaines tâches répétitives et dangereuses, tout en aidant le secteur à relever les défis de la productivité et de la pénurie de main-d’œuvre.

Un exemple : le robot de chantier semi-autonome Jaibot de Hilti. Conçu pour aider les entrepreneurs en mécanique, électricité et plomberie (MEP), Jaibot utilise les données BIM pour localiser et percer des trous pour les installations d’électricité et de plomberie en intérieur.

Certaines technologies, qui n’avaient pas été immédiatement adoptées par le secteur de la construction ces deux dernières années, ont maintenant trouvé leur place. D’un objet de curiosité, elles sont devenues un outil crédible.

Le câblage modulaire transforme le paysage électrique

Le câblage modulaire, dont les origines remontent au milieu des années 1990, révolutionne le paysage électrique en proposant une technologie plug-and-play au lieu des méthodes d’installation classiques. Il s’agit d’une solution à la fois rapide, sûre et facile pour connecter les circuits depuis le tableau électrique jusqu’au point de connexion final. Le câblage modulaire, initialement utilisé dans les bâtiments de haute sécurité tels que les établissements de santé, est aujourd’hui largement utilisé dans les écoles et les bâtiments publics, où il apporte des solutions à la pénurie de main-d’œuvre et aux impératifs réglementaires.

Au cours des 30 dernières années, le câblage modulaire a gagné en popularité pour devenir une alternative rentable et pratique aux installations électriques classiques. Il offre de nombreux avantages tout au long du processus de construction, depuis la conception et l’exploitation, jusqu’à la fin de vie. Les gouvernements, les constructeurs et les entrepreneurs en électricité ont progressivement acquis une certaine confiance dans la sécurité, la rentabilité et l’efficacité du câblage modulaire, tant dans le cadre des nouvelles constructions que des rénovations.

Pour répondre à la demande croissante de surface au sol, les architectes et les constructeurs s’appuient de plus en plus sur les techniques de la construction modulaire. Selon une étude récente de MarketsandMarkets, le marché mondial de la construction modulaire devrait passer de 91 milliards de dollars en 2022 à 120,4 milliards de dollars en 2027, soit une augmentation de 5,7 % entre 2022 et 2027.

Cette tendance est motivée par le besoin d’approches innovantes et la pénurie constante de main-d’œuvre qualifiée. Le câblage modulaire, au même titre que d’autres sous-ensembles et composants, peut contribuer à améliorer la productivité et les performances, tout en offrant une vision globale des coûts, y compris pour la fin de vie, les déchets et la sécurité. À mesure que le secteur s’oriente vers la préfabrication et la construction hors site, le câblage modulaire progresse, apportant des réponses aux exigences gouvernementales, aux impératifs de réduction des coûts, aux questions de qualité et de sécurité, tout en réduisant les effets sur l’environnement.

Câbler l’avenir

Les plus grands défis pour le secteur, à l’avenir, seront le changement des mentalités face aux nouvelles technologies et méthodes de construction, ainsi que l’apparition de critères de mesures plus complets.

Dans ce nouveau contexte, les câbles électriques ne devraient pas être considérés comme une simple marchandise et, à ce titre, être sélectionnés sur d’autres critères que leur seul prix, comme leur modèle, leurs matériaux, leur niveau de sécurité, etc. Ce changement de système de mesure prend en compte la performance, le risque et la durabilité comme des critères essentiels dans l’évaluation globale d’un projet de construction.

En Océanie, Nexans accompagne ses clients dans leur démarche de transition énergétique en leur proposant une solution complète de câblage modulaire. Il s’agit d’une solution efficace et durable pour réduire les déchets électriques sur les sites et les coûts d’installation. Elle englobe également les tableaux électriques, le câblage des couloirs, le câblage intérieur et les accessoires en bout de circuit.

La gestion de l’information et la conception des bâtiments étant de plus en plus détaillées dès le stade de la conception, le câblage modulaire gagne du terrain. En outre, les difficultés de l’approvisionnement et les coûts des matériaux incitent les professionnels de l’électricité à inclure le câblage modulaire dans leurs appels d’offres et leurs phases de conception.

Les solutions de câblage modulaire sont prometteuses et devraient continuera à gagner en popularité, en raison des avantages qu’elles offrent en termes de réduction des coûts, de fiabilité, de facilité d’installation, de sécurité, de qualité et de durabilité.

 

Souvent considéré comme une industrie de commodité, le secteur de la construction n’échappe pas à la tendance des nouvelles technologies et de l’innovation. Il a aujourd’hui à sa disposition une multitude d’outils et de solutions qui révolutionnent non seulement les processus, mais aussi les méthodes de travail et la préparation des chantiers. De nombreuses innovations s’avèrent déjà indispensables pour améliorer l’organisation des chantiers, la qualité du travail et l’efficacité des équipes. Les projets sont de plus en plus souvent conçus et réalisés en un temps record.

Développement durable, sécurité accrue sur les chantiers, solutions technologiques permettant de gagner du temps et de l’argent, outils numériques pour construire des structures plus respectueuses de l’environnement… L’innovation est omniprésente dans le secteur de la construction.

Christophe Demule

Author

Christophe Demule est Directeur de l’Innovation Bâtiment chez Nexans, au sein du Département Innovation Service et Croissance. Auparavant, il a occupé le poste de vice-président de l’ingénierie pour notre Business Group Industry Solutions & Projects, mettant à profit son expérience dans le domaine de la fabrication. En 2021, il a conçu et lancé la mise en œuvre de la stratégie d’innovation dans le bâtiment avec la création de six Design Labs dans le monde. En mettant l’accent sur l’expérience utilisateur, et en y associant la méthodologie du Design Thinking, les innovations permettent de résoudre les problématiques de nos clients et apportent une valeur ajoutée à toutes les parties prenantes.

Solutions de sécurité incendie électrique : protéger les vies et les biens
Électrification de demain
01 février 2023
13 min
Fire safety

L’électrification sûre et durable est au cœur de notre mission

On dénombre plus de 1,1 million d’incendies chaque année en Europe. Cela signifie qu’un incendie se déclare toutes les 30 secondes. L’impact sur la vie humaine est énorme : les incendies font 4 000 morts et 134 000 blessés par an. L’impact économique est également considérable, les coûts se chiffrant en milliards. Dans sa Revue Mondiale des Sinistres de 2022, Allianz a cité l’incendie comme la plus importante cause identifiée de pertes pour les assureurs d’entreprises, ayant entraîné plus de 18 milliards d’euros de dédommagements sur cinq ans. On estime que 70 % de ces entreprises touchées par un incendie ne redémarrent pas.

Les dernières recherches de la FEEDS (Forum for European Electrical Domestic Safety) montrent que 25 % des incendies sont causés par des défaillances électriques. Celles-ci sont souvent le résultat d’installations électriques obsolètes et surchargées, ou bien dues aux appareillages électriques.

Le vieillissement des infrastructures n’est qu’un aspect du problème. À l’échelle mondiale, la croissance démographique rapide et l’urbanisation accélérée signifient que le nombre d’utilisateurs d’électricité augmente chaque jour. Dans ce contexte, la consommation d’électricité continue de croître, la demande devant augmenter de 20 % d’ici à 2030 et de 40 % d’ici à 2040.

Les nouveaux modes d’utilisation de l’électricité génèrent de nouveaux risques. Des tablettes aux smartphones, nous nous appuyons de plus en plus sur des appareils numériques fonctionnant à l’électricité. Parallèlement, l’essor des véhicules électriques et la généralisation de la production solaire sur les toits alourdissent la charge pesant sur les systèmes de câblage domestiques, augmentant ainsi les risques d’incendie.

Cette électrification accrue a un impact fort : selon une étude de la NFPA (National Fire Protection Association) les équipements de distribution électrique, d’éclairage et de transfert d’énergie sont responsables de la moitié des incendies domestiques impliquant une panne ou un dysfonctionnement électrique. Connaissant l’impact dévastateur du feu, une telle menace exige une réponse adéquate pour protéger les biens et les personnes.

Comment les systèmes électriques contribuent-ils à un monde plus sûr ?

Les câbles constituent l’ossature électrique d’un bâtiment, présents partout et en grande quantité pour transporter de l’énergie et des données. Ils relient les pièces et les étages, traversent les murs sans interruption, et leur nombre ne cesse d’augmenter avec les nouveaux usages énergétiques. Comme les câbles et les fils sont généralement dissimulés dans les murs, les sols et les plafonds, il est facile d’oublier qu’ils sont là. Pourtant, un immeuble de bureaux typique compte plus de 200 kg de câbles par 100 m². Il est donc essentiel de s’assurer que les câbles ne seront pas un vecteur de propagation des flammes à travers le bâtiment.

Ces dernières années, l’accent a été mis sur l’amélioration des performances en matière d’incendie en réponse à de nouvelles réglementations, telles que le règlement européen sur les produits de construction (CPR). Nexans est profondément engagé dans ce processus, travaillant avec ses partenaires, clients, et organismes de standardisation pour promouvoir la sécurité incendie électrique dans les bâtiments, et adopter des normes de sécurité plus élevées, tant au niveau national qu’international.

Lutter contre la propagation des incendies

Les câbles ne représentent pas un danger en tant que tel, mais du fait de leur omniprésence, ils peuvent servir de combustible pour le feu et être un vecteur de propagation des flammes : un incendie qui se déclare dans une installation électrique verticale comprenant des câbles peu performants atteindra le premier étage du bâtiment en moins de trois minutes, et continuera à se propager de plus en plus vite.

Chez Nexans, nous avons pour objectif de révolutionner la sécurité des bâtiments, des infrastructures et des habitations, en utilisant notre expertise technologique pour concevoir des câbles et des fils offrant le plus haut niveau de performance au feu. Notre gamme Nexans Sécurité Incendie souligne ce qui peut être réalisé. Grâce à nos câbles de protection au feu, la production de fumées et de gaz incapacitants, la propagation du feu et le dégagement de chaleur sont minimisés. De plus, la cohésion de la structure du câble est maintenue pendant l’incendie, ce qui réduit ou élimine la production de gouttelettes enflammées, évitant ainsi le démarrage d’incendies secondaires et limitant les risques de blessures pour les pompiers.

Tous ces éléments ont un impact majeur sur la capacité des personnes à évacuer à temps et de façon sécurisée grâce à une visibilité optimum. Parallèlement, nos câbles de protection au feu facilitent le travail des pompiers en libérant de l’eau lorsqu’ils sont exposés aux flammes, ce qui réduit la température du feu et dilue les gaz combustibles.

Chez Nexans, une percée technologique permettant d’améliorer la performance des câbles de protection au feu va bientôt voir le jour. Basée sur la technologie des géopolymères, elle fonctionne en créant une croûte dure et hermétique autour des fils toronnés qui les rend incombustibles. Outre l’amélioration de la résistance au feu, cette innovation présente l’avantage d’améliorer la performance environnementale des câbles en réduisant leur contenu en carbone incorporé, ce qui permet de réduire les émissions de CO2 de 10 à 15 % au niveau de la fabrication.

Réduire les émissions de fumées lors d’un incendie

La fumée et les émissions de gaz toxiques sont les principales causes de décès lors d’un incendie à l’intérieur d’un bâtiment, étant responsables de 80 % des décès liés aux incendies. Les gaz incapacitants contenus dans la fumée attaquent les poumons, ainsi que les yeux et la peau. En outre, la fumée limite fortement la visibilité, rendant la fuite des bâtiments beaucoup plus difficile.

La gamme Nexans Fire Safety est conçue pour transformer la sécurité incendie. Tout d’abord, nos câbles minimisent les émissions de fumée, permettant une visibilité dix fois plus élevée qu’avec les modèles traditionnels en cas d’incendie, soit cinq fois plus que le seuil recommandé. De plus, ils réduisent les émissions de gaz incapacitants et corrosifs, augmentant drastiquement les chances d’évacuation, tout en aidant les pompiers à lutter contre l’incendie.

Les systèmes de sécurité incendie

Les câbles résistants au feu jouent un rôle crucial dans le maintien du fonctionnement continu des systèmes électriques de protection contre l’incendie et de sécurité des personnes – même lorsqu’un bâtiment est en feu. Les durées minimales de maintien de l’alimentation électrique en cas d’incendie sont définies dans les réglementations nationales. Les câbles doivent être capables de fonctionner de manière fiable même dans des conditions extrêmes, avec des températures allant jusqu’à 1 000°C, et ce pendant une durée pouvant aller jusqu’à 2 heures.

Les systèmes de protection contre les incendies et de sécurité des personnes comprennent :

  • Les systèmes de détection incendie : détecteurs de fumée, détecteurs de chaleur, déclencheurs manuels
  • Systèmes d’alarme incendie : alarmes et panneaux de contrôle
  • Les systèmes de protection contre les incendies : active (gicleurs) et passive (comme les murs et les portes coupe-feu)
  • Les systèmes de contrôle de fumée (systèmes de pressurisation et d’extraction)
  • Les systèmes d’évacuation des bâtiments (y compris la signalisation des sorties).
Fire safety systems

Les systèmes de sécurité incendie

Les composants des systèmes de sécurité doivent être connectés au réseau électrique. Les câbles résistants au feu sont souvent utilisés pour fournir de l’énergie, ou pour établir des connexions entre les équipements de secours et les panneaux de commande. Lorsque c’est le cas, ils fonctionnent comme des éléments “actifs” puisqu’ils doivent maintenir la continuité électrique ou transmettre un signal pendant une durée adéquate.
Trois technologies principales sont utilisées pour produire des câbles résistants au feu.

Les conceptions de première génération étaient basées sur des conducteurs en cuivre enveloppés de rubans de mica et de polyoléfine réticulée. Dans ce cas, la technologie de base est le mica, et les performances du câble sont liées à sa qualité, sa nature, ses fournisseurs et son enrobage.

Les câbles de deuxième génération étaient basés sur des conducteurs isolés avec du caoutchouc de silicone. Ce matériau a la propriété de former un écran céramique lorsqu’il est brûlé. Cela maintient une résistance électrique élevée et c’est la solution la plus courante pour les applications de construction.

Pour la dernière génération de câbles résistants au feu, nous avons développé des câbles basés sur la technologie brevetée INFIT™ qui combine les avantages des isolations en mica et en caoutchouc de silicone, mais sans leurs inconvénients. Les performances au feu des câbles INFIT™ sont similaires aux technologies traditionnelles du marché, mais ces câbles possèdent des propriétés mécaniques avancées, simplifiant grandement l’installation des câbles, apportant des gains de temps et de coûts précieux.

Avec les câbles INFIT™, il est possible de connecter tous les dispositifs d’un système de détection d’incendie, y compris les détecteurs de fumée, afin de garantir la détection des incendies et le déclenchement des alarmes. Tout cela garantit une évacuation rapide et contribue à une lutte efficace contre les incendies.

Nous nous concentrons sur vos besoins

Chez Nexans, notre mission est de fournir des produits et solutions innovants qui répondent aux besoins de sécurité de nos clients câbliers. Nous donnons à nos clients les capacités de planifier, bâtir et gérer leurs projets avec le plus haut degré de protection. La gamme Nexans Sécurité Incendie permet d’Anticiper les risques d’incendies, Sécuriser les biens et Protéger les personnes. Nous soutenons cette mission par des informations et des conseils complets pour vous aider à prendre des décisions éclairées en matière de sécurité incendie – afin que nous puissions électrifier l’avenir en toute confiance.

Franck Gyppaz

Auteur

Franck Gyppaz est responsable du laboratoire de conception de systèmes de sécurité incendie à AmpaCity, le pôle d’innovation de Nexans. Il travaille dans l’industrie du câble depuis plus de 20 ans, s’impliquant dans le domaine de la sécurité incendie et développant des technologies innovantes, des conceptions de câbles et un laboratoire de test incendie avec l’accréditation ISO17025 et la certification UL. Il est également actif dans le domaine de la normalisation, membre de différents groupes au niveau national et international.Sa position l’amène à gérer les relations avec tous les acteurs de l’écosystème de la sécurité incendie pour proposer des systèmes intégrés à nos clients.

Innovation des VE : accélérer la transition vers une mobilité durable
Électrification de demain
13 janvier 2023
12 min
Electric vehicles

Comme d’autres secteurs, l’industrie automobile doit évoluer pour relever les futurs défis économiques et écologiques. Aujourd’hui, les véhicules thermiques sont responsables de près de 10% des émissions de CO2 dans le monde. Dans les pays développés comme la France, ce chiffre atteint 15%. L’électrification de ces véhicules est donc un enjeu clé de la transition vers une économie à faible émission de carbone.

D’après le “World Energy Outlook 2022” publié par l’Agence internationale de l’énergie, l’augmentation de la demande mondiale d’électricité d’ici à 2030 équivaut à l’addition de la consommation actuelle d’électricité des États-Unis et de l’Union européenne ! Une telle augmentation de l’électricité est de l’ordre de +5 900 à +7 000 TWh selon les scénarios.

Les principaux contributeurs à une telle augmentation sont :

  • le transport électrique dans les économies avancées,
  • la croissance démographique et la demande de refroidissement dans les marchés émergents et les économies en développement.

La mobilité électrique est un enjeu important et un facteur majeur de la demande supplémentaire d’électricité. Cependant, cet objectif ne doit pas seulement se concentrer sur le développement et l’évolution des véhicules par les constructeurs mais aussi prendre en compte les infrastructures.

Il est important de mettre l’accent sur les besoins en infrastructures de recharge et en technologies innovantes dédiées aux véhicules électriques (VE), qui doivent permettre aux utilisateurs de ce type de véhicule de se déplacer partout, à tout moment, en toute sérénité et d’assurer le bon fonctionnement du système électrique.

Véhicules électriques : un changement majeur imposé par la transition énergétique

Les pouvoirs publics de plusieurs pays multiplient les initiatives pour favoriser cette évolution des solutions de mobilité. Parmi les actions en vigueur ou à l’étude, un nombre croissant de pays se sont engagés à supprimer progressivement les moteurs à combustion interne ou ont des objectifs ambitieux d’électrification des véhicules pour les prochaines décennies. En Europe, l’objectif fixé est de stopper les ventes de nouveaux véhicules à moteur thermique d’ici 2035.

Le scénario des engagements annoncés (APS) de l’AIE, qui repose sur les engagements et les annonces politiques existants en matière de climat, suppose que les VE représentent plus de 30 % des véhicules vendus dans le monde en 2030, tous modes confondus (à l’exclusion des véhicules à deux ou trois roues). Bien qu’impressionnant, ce chiffre est encore bien loin des 60 % nécessaires d’ici 2030 pour s’aligner sur une trajectoire qui permettrait d’atteindre des émissions nettes de CO2 nulles d’ici 2050.

A l’horizon 2025, on estime que le marché du véhicule électrique en France représentera 12 milliards d’euros, dont 8 à 11 milliards d’euros de ventes de véhicules électriques, 150 à 250 millions d’euros pour les bornes de recharge et 300 à 600 millions d’euros pour la vente d’électricité nécessaire à la recharge.

Le déploiement rapide des stations de recharge des véhicules électriques, condition clé du développement des véhicules électriques

Cette transition vers les véhicules électriques nécessite trois conditions principales pour atteindre l’ambition visée :

  • Le développement de véhicules nouveaux et attractifs, avec pour enjeux : la capacité des batteries face à la densité énergétique d’un litre de pétrole, la disponibilité des ressources minérales pour renouveler entièrement le parc automobile mondial (en raison de la rareté des métaux rares), l’enjeu de l’empreinte environnementale d’un véhicule électrique (au-delà de la seule question de la rareté des métaux).
  • La disponibilité de l’énergie où et quand les véhicules seront rechargés. Bien que l’impact d’un véhicule électrique sur le réseau électrique soit très limité au niveau domestique, les 22 millions de véhicules électriques et hybrides attendus en 2025 en Europe augmenteront considérablement la demande globale d’électricité (de 4 860 en 2020 à 47 000 GWh en 2025), ce qui nécessitera à la fois un renforcement du réseau, davantage d’énergie et, en outre, une gestion plus intelligente de la charge pour équilibrer l’utilisation et la disponibilité de l’énergie.
  • Enfin, le déploiement d’un réseau dense de stations de recharge (EVCS) pour apporter une solution au consommateur en mobilité.

Fondamentalement, le réseau EVCS sera efficace s’il est déployé comme un écosystème global répondant aux besoins des consommateurs dans quatre applications principales :

  • La charge “à domicile” (90% des charges de VE se font aujourd’hui à domicile, individuel ou collectif) ;
  • La charge “au travail” (bâtiments tertiaires ou institutionnels, usines,…) ;
  • La charge “en ville” (magasins, restaurants, parkings publics,…) ;
  • La charge “en voyage” (autoroutes).

Chacune de ces applications obéit à ses propres contraintes en matière de coût économique de déploiement, de temps de chargement prévu, de concurrence avec les autres véhicules, de facturation de l’énergie à l’utilisateur… Quel que soit le type de solution de charge à proposer (en courant alternatif pour la majorité des besoins ou en courant continu pour la charge rapide), elle imposera des contraintes importantes sur le réseau électrique qu’il faudra anticiper.

Cet écosystème vaste et complexe à déployer en une décennie nécessitera des investissements importants mais aussi une forte innovation pour une évolutivité maximale des installations et une gestion intelligente de l’énergie.

Les partenariats et l’innovation sont essentiels

Pour illustrer ce défi de l’innovation, nous pouvons citer par exemple 2 projets impliquant les équipes R&D de Nexans en partenariat avec Enedis ces dernières années :

  • Projet “BIENVENU” : Comment proposer une infrastructure de recharge évolutive et économique dans des bâtiments d’habitat collectif conçus bien avant l’essor du véhicule électrique (seulement 2% équipés en 2022 en France, pour ~45% de la population vivant en habitat collectif) ?
  • Projet “SMAC” : Comment créer les conditions technologiques permettant le Vehicule-to-Grid (V2G) pour injecter l’énergie stockée dans les batteries des VE dans le réseau lors des pics de consommation d’énergie ou pour compenser la production intermittente d’énergie à partir de sources renouvelables ?

Nexans propose également, avec son partenaire e-Novates, une gamme complète de bornes de recharge en courant alternatif de 7 à 22 kW conçues pour s’adapter à diverses applications intérieures/extérieures pour des clients professionnels ou publics.

Cette gamme de produits sera entièrement renouvelée en 2023 avec de nouveaux modèles rapides à installer et compatibles avec la nouvelle norme ISO 15 118. En parallèle sera présentée la nouvelle version de la solution de câblage évolutive Nexans “NEOBUS”, conçue en partenariat avec MICHAUD, dédiée aux parkings souterrains intégrant un risque spécifique de sécurité incendie.

Nexans est donc un acteur clé de cette évolution du marché du véhicule électrique. Les nouvelles solutions proposées faciliteront grandement la vie quotidienne des utilisateurs, tant dans le secteur privé que sur la voie publique, et amélioreront l’attractivité de ces nouveaux véhicules.

Il est clair que les éléments de différenciation sont les facteurs clés de l’innovation :

  • Pour les véhicules, le design global, la fiabilité dans le temps et l’autonomie liée à la puissance et à l’efficacité des batteries, sont des facteurs de différenciation ;
  • Pour les équipements d’infrastructure de recharge, nous pensons que les principaux critères de différenciation ne sont pas liés au matériel mais à la couche numérique qui permet le suivi des bornes de recharge, interfacée avec les moyens de paiement, et les applications qui améliorent l’expérience client. Le deuxième axe de différenciation est la facilité et la rapidité d’installation des bornes et leur raccordement au réseau électrique.

Limiter l’impact sur l’environnement

Le déploiement des véhicules électriques et leur part croissante dans la mobilité auront un impact significatif sur la réduction du réchauffement climatique, à condition bien sûr que de l’électricité décarbonée soit produite et utilisée. Cependant, il est également important de considérer l’impact des véhicules électriques sur les ressources, notamment le cuivre. En 2020, la production est de 21 Mt pour une consommation quasi équivalente. La demande va s’accélérer du fait de l’électrification et notamment de la mobilité électrique.

Concrètement, un véhicule thermique traditionnel nécessite 20 kg de cuivre, un véhicule hybride deux fois plus (40 kg), et un véhicule électrique 80 kg de cuivre en moyenne, soit 4 fois plus qu’un véhicule classique (cette quantité peut atteindre 200 kg pour certains modèles comme Tesla).

20 kg

de cuivre sont nécessaires pour un véhicule thermique

40 kg

de cuivre sont nécessaires pour un véhicule hybride

80 kg

de cuivre sont nécessaires pour un véhicule électrique

À cette augmentation conséquente de métal dédié aux véhicules électriques, on peut ajouter le cuivre nécessaire à l’infrastructure de recharge, aux équipements de recharge en courant alternatif et continu, mais aussi au système de connexion au réseau électrique. Selon une estimation prudente, 3Mt de métal seront nécessaires pour cette transition.

Pour limiter l’impact de la transition électrique sur les ressources en cuivre, il est nécessaire d’accompagner le changement par une filière de recyclage du cuivre et la mise en place d’un écosystème d’économie circulaire.

Attachez votre ceinture ! Frédéric Lesur s’apprête à nous faire faire un tour d’essai avec Thibault Dupont. Les véhicules électriques et les bornes de recharge, leur construction, les défis à venir, tout est dans cet épisode de What’s Watt.

Cyrill Million

Auteurs

Cyrill Million est responsable du département Solutions de recharge pour véhicules électriques, au sein de la division Câbles d’énergie et accessoires de Nexans.

Cyrill a rejoint Nexans en 2021 en tant que responsable Marketing & Stratégie avec pour mission d’amplifier la position de Nexans sur les marchés de la transition énergétique et de promouvoir des solutions innovantes auprès des partenaires clés de Nexans.

Il est titulaire d’un Master en ingénierie aéronautique de Supaero, France.

David Myotte

David Myotte est responsable marketing et stratégie au sein de l’unité Power Distribution Cables & Accessories Business Unit de Nexans.

Après 15 ans dans l’industrie automobile et 7 ans dans l’industrie sidérurgique, principalement à des postes commerciaux, il a rejoint Nexans début 2020, en charge des ventes d’accessoires pour l’Europe du Nord et du Sud. Dans son rôle actuel, en plus d’élaborer des stratégies marketing et de nouvelles offres visant à améliorer l’expérience et la satisfaction des clients de Nexans, il est responsable des ventes des stations de recharge de véhicules électriques (EVCS) de Nexans.

La révolution du courant continu
Des technologies pionnières pour l’électrification de demain
Électrification de demain
14 juin 2022
7 min
Direct current renaissance

Après plus d’un siècle passé dans l’ombre, le courant continu pourrait bien prendre sa revanche.

Les dernières années du 19ème siècle ont été marquées par une bataille acharnée autour de la meilleure méthode d’approvisionnement des consommateurs en électricité, opposant d’un côté le courant continu (promu par Thomas Edison) et de l’autre le courant alternatif (soutenu par Nikola Tesla). C’est le second qui l’a emporté et domine le monde depuis lors.

L’histoire aurait pu s’arrêter là mais deux facteurs en ont décidé autrement. D’une part, le courant continu se révèle remarquablement efficace pour le transfert massif d’électricité sur de longues distances – c’est d’ailleurs l’un de ses usages depuis des décennies. D’autre part, nous utilisons un nombre croissant d’équipements électriques fonctionnant au courant continu : téléphones mobiles, éclairages LED, véhicules électriques…

Tout cela conduit à réévaluer l’intérêt du courant continu pour le transport, la distribution voire la consommation d’électricité par l’utilisateur final. Que pourrait-il en être dans la pratique ?

Transport en courant continu

Le transport est le transfert massif d’énergie électrique, typiquement sur de longues distances, au moyen de conducteurs aériens ou de câbles souterrains (ou sous-marins). L’utilisation du courant continu haute tension (CCHT) pour le transport d’électricité présente un certain nombre d’avantages par rapport à l’alternatif haute tension.

Tout d’abord, le CCHT nécessite moins de matériel : seulement deux conducteurs au lieu de trois pour l’alternatif. Ensuite, les pertes électriques sont moindres en courant continu car seule la puissance active est transférée (alors que le courant alternatif transfère à la fois la puissance active et réactive). Enfin, la longueur possible des liaisons de transport est bien plus grande dans le cas du courant continu grâce à l’absence de puissance réactive.

Le CCHT est une technologie éprouvée, qui ne cesse de se perfectionner au fil du temps. Parmi les récentes évolutions figurent notamment les convertisseurs de source de tension (VSC) et l’accroissement de la capacité de transport des câbles. Cette avancée est imputable à l’augmentation des tensions, des températures de fonctionnement, de la section des conducteurs, ainsi qu’à l’apparition de la fabrication par extrusion. Il en résulte une réduction de l’empreinte au sol et du coût des projets CCHT relativement à l’énergie transférée. En bref, le transport CCHT devient nettement plus compétitif.

L’avenir radieux du CCHT

Deux tendances majeures du marché sont à l’origine du regain d’intérêt pour le transport CCHT. La première est la demande croissante d’interconnexion des réseaux électriques, par-delà les frontières et les océans. La seconde tient à la multiplication des parcs éoliens offshore, avec leurs câbles sous-marins d’exportation à terre.

À ce jour, quelque 15 000 km de câbles sous-marins CCHT ont été posés, employant les procédés d’imprégnation de matière (IM) ou d’extrusion XLPE (polyéthylène réticulé). 20 000 km supplémentaires d’interconnecteurs CCHT devraient être déployés d’ici 2030, sans compter les câbles d’exportation des parcs éoliens offshore. Le parc installé de câbles extrudés devrait s’étendre et égaler la longueur des câbles IM avant la fin de cette décennie. Les fabricants de câbles sous-marins CCHT se positionnent sur ce marché en investissant dans l’accroissement de leurs capacités de production et de pose.

Le courant continu pourrait-il aussi servir pour la distribution ?

Les réseaux de distribution moyenne tension (MT) et basse tension (BT), ainsi qu’à l’intérieur des bâtiments, sont dominés depuis longtemps par le courant alternatif. Cependant, la transition progressive vers le courant continu – permise par le développement des microréseaux BT et MT– pourrait amener des économies d’énergie, améliorer l’interopérabilité, faciliter l’intégration des énergies renouvelables et augmenter la durabilité.

L’intérêt pour les micro-réseaux en courant continu est motivé par des changements fondamentaux dans les modes de production, de stockage et de consommation de l’électricité.

Premièrement, la production d’électricité est de moins en moins centralisée et se rapproche des sources de demande, à l’exemple du solaire photovoltaïque sur les toits et du petit éolien. Les panneaux photovoltaïques produisent naturellement du courant continu, tout comme certaines micro-éoliennes.

Deuxièmement, les batteries se généralisent pour le stockage de l’électricité, par exemple dans les onduleurs. Elles sont utilisées par les entreprises, notamment au sein des data centers, pour sécuriser leur approvisionnement en énergie. Des systèmes de stockage d’énergie sur batteries (BESS) sont également de plus en plus déployés pour l’équilibrage des réseaux. En outre, des systèmes domestiques de ce type commencent à être disponibles. Surtout, les batteries des véhicules électriques offrent un potentiel d’intégration au réseau. L’un des aspects essentiels du stockage sur batterie est que la majeure partie est distribuée plutôt que centralisée et que la totalité fonctionne en courant continu.

Troisièmement, côté consommation, les équipements en courant continu sont aujourd’hui légions et leur adoption est en plein essor, comme souligné plus haut : smartphones, ampoules LED, véhicules électriques… Jusqu’à présent, tous dépendent d’un adaptateur pour la conversion alternatif-continu.

Autant de facteurs qui créent un terrain propice pour des micro-réseaux en courant continu réunissant la production et la consommation, avec un stockage de secours sur batteries, y compris celles des véhicules électriques. L’un des attraits de ce modèle est qu’il élimine la nécessité d’une conversion alternatif-continu et donc d’un adaptateur, ce qui aboutit en soi à une économie d’énergie.

AC/DC, Courants… et des reprises de Rock N’ Roll

Dans cette vidéo What’s Watt, Frédéric Lesur explique la différence entre courant alternatif et courant continu, tout en offrant des performances électrisantes pour dynamiser votre expérience de visionnage.

Comment Nexans favorise-t-il le courant continu ?

Nexans est un leader du marché des câbles CCHT sous-marins et investit continuellement dans le développement de ses capacités de fabrication et de déploiement. En 2021, nous avons lancé le Nexans Aurora, le navire câblier le plus avancé au monde. Le Groupe est bien placé pour accompagner les besoins futurs des opérateurs de réseaux de transport comme des promoteurs de parcs éoliens.

Alors que les installations en courant continu (CC) se multiplient dans le secteur du transport haute tension, l’étape suivante pourrait consister en des microréseaux CC moyenne et basse tension. Ceux-ci devront utiliser des câbles, accessoires et connecteurs optimisés pour être viables sur le plan technique. Il leur faudra également satisfaire aux exigences de fiabilité, d’efficacité énergétique, de durabilité et de sécurité.

Hans Kvarme

Authors

Hans Kvarme est responsable de la Techno Platform HVDC XLPE, gérant toutes les activités de R&D liées aux câbles XLPE HVDC pour le Business Group Subsea and Land Systems de Nexans. Cela implique la recherche et le développement, mais aussi la qualification de lignes d’extrusion, de matériaux, de procédés et d’accessoires nouveaux et existants.

Auparavant, Hans a occupé chez Nexans les postes de directeur de l’ingénierie et du développement de nouveaux produits au sein de la division Innovation, Service et Croissance, et de chef de département Ingénierie des appels d’offres au sein de SLS.

Il est titulaire d’une maîtrise en génie électrique et environnemental de l’université norvégienne NTNU.

Samuel Griot

Samuel Griot est responsable du département ingénierie électrique au sein du service Innovation et Croissance.

Il dirige une équipe d’experts développant de nouvelles solutions innovantes pour les applications basse, moyenne et haute tension afin de répondre aux besoins futurs des réseaux électriques. Samuel a rejoint Nexans en 2021 et possède une solide expérience en architecture de réseaux électriques et en appareillage de commutation.

Il est titulaire d’un Master en génie électrique de l’INSA de Lyon, France.