Innovation des VE : accélérer la transition vers une mobilité durable
Électrification de demain
13 janvier 2023
12 min
Electric vehicles

Comme d’autres secteurs, l’industrie automobile doit évoluer pour relever les futurs défis économiques et écologiques. Aujourd’hui, les véhicules thermiques sont responsables de près de 10% des émissions de CO2 dans le monde. Dans les pays développés comme la France, ce chiffre atteint 15%. L’électrification de ces véhicules est donc un enjeu clé de la transition vers une économie à faible émission de carbone.

D’après le “World Energy Outlook 2022” publié par l’Agence internationale de l’énergie, l’augmentation de la demande mondiale d’électricité d’ici à 2030 équivaut à l’addition de la consommation actuelle d’électricité des États-Unis et de l’Union européenne ! Une telle augmentation de l’électricité est de l’ordre de +5 900 à +7 000 TWh selon les scénarios.

Les principaux contributeurs à une telle augmentation sont :

  • le transport électrique dans les économies avancées,
  • la croissance démographique et la demande de refroidissement dans les marchés émergents et les économies en développement.

La mobilité électrique est un enjeu important et un facteur majeur de la demande supplémentaire d’électricité. Cependant, cet objectif ne doit pas seulement se concentrer sur le développement et l’évolution des véhicules par les constructeurs mais aussi prendre en compte les infrastructures.

Il est important de mettre l’accent sur les besoins en infrastructures de recharge et en technologies innovantes dédiées aux véhicules électriques (VE), qui doivent permettre aux utilisateurs de ce type de véhicule de se déplacer partout, à tout moment, en toute sérénité et d’assurer le bon fonctionnement du système électrique.

Véhicules électriques : un changement majeur imposé par la transition énergétique

Les pouvoirs publics de plusieurs pays multiplient les initiatives pour favoriser cette évolution des solutions de mobilité. Parmi les actions en vigueur ou à l’étude, un nombre croissant de pays se sont engagés à supprimer progressivement les moteurs à combustion interne ou ont des objectifs ambitieux d’électrification des véhicules pour les prochaines décennies. En Europe, l’objectif fixé est de stopper les ventes de nouveaux véhicules à moteur thermique d’ici 2035.

Le scénario des engagements annoncés (APS) de l’AIE, qui repose sur les engagements et les annonces politiques existants en matière de climat, suppose que les VE représentent plus de 30 % des véhicules vendus dans le monde en 2030, tous modes confondus (à l’exclusion des véhicules à deux ou trois roues). Bien qu’impressionnant, ce chiffre est encore bien loin des 60 % nécessaires d’ici 2030 pour s’aligner sur une trajectoire qui permettrait d’atteindre des émissions nettes de CO2 nulles d’ici 2050.

A l’horizon 2025, on estime que le marché du véhicule électrique en France représentera 12 milliards d’euros, dont 8 à 11 milliards d’euros de ventes de véhicules électriques, 150 à 250 millions d’euros pour les bornes de recharge et 300 à 600 millions d’euros pour la vente d’électricité nécessaire à la recharge.

Le déploiement rapide des stations de recharge des véhicules électriques, condition clé du développement des véhicules électriques

Cette transition vers les véhicules électriques nécessite trois conditions principales pour atteindre l’ambition visée :

  • Le développement de véhicules nouveaux et attractifs, avec pour enjeux : la capacité des batteries face à la densité énergétique d’un litre de pétrole, la disponibilité des ressources minérales pour renouveler entièrement le parc automobile mondial (en raison de la rareté des métaux rares), l’enjeu de l’empreinte environnementale d’un véhicule électrique (au-delà de la seule question de la rareté des métaux).
  • La disponibilité de l’énergie où et quand les véhicules seront rechargés. Bien que l’impact d’un véhicule électrique sur le réseau électrique soit très limité au niveau domestique, les 22 millions de véhicules électriques et hybrides attendus en 2025 en Europe augmenteront considérablement la demande globale d’électricité (de 4 860 en 2020 à 47 000 GWh en 2025), ce qui nécessitera à la fois un renforcement du réseau, davantage d’énergie et, en outre, une gestion plus intelligente de la charge pour équilibrer l’utilisation et la disponibilité de l’énergie.
  • Enfin, le déploiement d’un réseau dense de stations de recharge (EVCS) pour apporter une solution au consommateur en mobilité.

Fondamentalement, le réseau EVCS sera efficace s’il est déployé comme un écosystème global répondant aux besoins des consommateurs dans quatre applications principales :

  • La charge “à domicile” (90% des charges de VE se font aujourd’hui à domicile, individuel ou collectif) ;
  • La charge “au travail” (bâtiments tertiaires ou institutionnels, usines,…) ;
  • La charge “en ville” (magasins, restaurants, parkings publics,…) ;
  • La charge “en voyage” (autoroutes).

Chacune de ces applications obéit à ses propres contraintes en matière de coût économique de déploiement, de temps de chargement prévu, de concurrence avec les autres véhicules, de facturation de l’énergie à l’utilisateur… Quel que soit le type de solution de charge à proposer (en courant alternatif pour la majorité des besoins ou en courant continu pour la charge rapide), elle imposera des contraintes importantes sur le réseau électrique qu’il faudra anticiper.

Cet écosystème vaste et complexe à déployer en une décennie nécessitera des investissements importants mais aussi une forte innovation pour une évolutivité maximale des installations et une gestion intelligente de l’énergie.

Les partenariats et l’innovation sont essentiels

Pour illustrer ce défi de l’innovation, nous pouvons citer par exemple 2 projets impliquant les équipes R&D de Nexans en partenariat avec Enedis ces dernières années :

  • Projet “BIENVENU” : Comment proposer une infrastructure de recharge évolutive et économique dans des bâtiments d’habitat collectif conçus bien avant l’essor du véhicule électrique (seulement 2% équipés en 2022 en France, pour ~45% de la population vivant en habitat collectif) ?
  • Projet “SMAC” : Comment créer les conditions technologiques permettant le Vehicule-to-Grid (V2G) pour injecter l’énergie stockée dans les batteries des VE dans le réseau lors des pics de consommation d’énergie ou pour compenser la production intermittente d’énergie à partir de sources renouvelables ?

Nexans propose également, avec son partenaire e-Novates, une gamme complète de bornes de recharge en courant alternatif de 7 à 22 kW conçues pour s’adapter à diverses applications intérieures/extérieures pour des clients professionnels ou publics.

Cette gamme de produits sera entièrement renouvelée en 2023 avec de nouveaux modèles rapides à installer et compatibles avec la nouvelle norme ISO 15 118. En parallèle sera présentée la nouvelle version de la solution de câblage évolutive Nexans “NEOBUS”, conçue en partenariat avec MICHAUD, dédiée aux parkings souterrains intégrant un risque spécifique de sécurité incendie.

Nexans est donc un acteur clé de cette évolution du marché du véhicule électrique. Les nouvelles solutions proposées faciliteront grandement la vie quotidienne des utilisateurs, tant dans le secteur privé que sur la voie publique, et amélioreront l’attractivité de ces nouveaux véhicules.

Il est clair que les éléments de différenciation sont les facteurs clés de l’innovation :

  • Pour les véhicules, le design global, la fiabilité dans le temps et l’autonomie liée à la puissance et à l’efficacité des batteries, sont des facteurs de différenciation ;
  • Pour les équipements d’infrastructure de recharge, nous pensons que les principaux critères de différenciation ne sont pas liés au matériel mais à la couche numérique qui permet le suivi des bornes de recharge, interfacée avec les moyens de paiement, et les applications qui améliorent l’expérience client. Le deuxième axe de différenciation est la facilité et la rapidité d’installation des bornes et leur raccordement au réseau électrique.

Limiter l’impact sur l’environnement

Le déploiement des véhicules électriques et leur part croissante dans la mobilité auront un impact significatif sur la réduction du réchauffement climatique, à condition bien sûr que de l’électricité décarbonée soit produite et utilisée. Cependant, il est également important de considérer l’impact des véhicules électriques sur les ressources, notamment le cuivre. En 2020, la production est de 21 Mt pour une consommation quasi équivalente. La demande va s’accélérer du fait de l’électrification et notamment de la mobilité électrique.

Concrètement, un véhicule thermique traditionnel nécessite 20 kg de cuivre, un véhicule hybride deux fois plus (40 kg), et un véhicule électrique 80 kg de cuivre en moyenne, soit 4 fois plus qu’un véhicule classique (cette quantité peut atteindre 200 kg pour certains modèles comme Tesla).

20 kg

de cuivre sont nécessaires pour un véhicule thermique

40 kg

de cuivre sont nécessaires pour un véhicule hybride

80 kg

de cuivre sont nécessaires pour un véhicule électrique

À cette augmentation conséquente de métal dédié aux véhicules électriques, on peut ajouter le cuivre nécessaire à l’infrastructure de recharge, aux équipements de recharge en courant alternatif et continu, mais aussi au système de connexion au réseau électrique. Selon une estimation prudente, 3Mt de métal seront nécessaires pour cette transition.

Pour limiter l’impact de la transition électrique sur les ressources en cuivre, il est nécessaire d’accompagner le changement par une filière de recyclage du cuivre et la mise en place d’un écosystème d’économie circulaire.

Attachez votre ceinture ! Frédéric Lesur s’apprête à nous faire faire un tour d’essai avec Thibault Dupont. Les véhicules électriques et les bornes de recharge, leur construction, les défis à venir, tout est dans cet épisode de What’s Watt.

Cyrill Million

Auteurs

Cyrill Million est responsable du département Solutions de recharge pour véhicules électriques, au sein de la division Câbles d’énergie et accessoires de Nexans.

Cyrill a rejoint Nexans en 2021 en tant que responsable Marketing & Stratégie avec pour mission d’amplifier la position de Nexans sur les marchés de la transition énergétique et de promouvoir des solutions innovantes auprès des partenaires clés de Nexans.

Il est titulaire d’un Master en ingénierie aéronautique de Supaero, France.

David Myotte

David Myotte est responsable marketing et stratégie au sein de l’unité Power Distribution Cables & Accessories Business Unit de Nexans.

Après 15 ans dans l’industrie automobile et 7 ans dans l’industrie sidérurgique, principalement à des postes commerciaux, il a rejoint Nexans début 2020, en charge des ventes d’accessoires pour l’Europe du Nord et du Sud. Dans son rôle actuel, en plus d’élaborer des stratégies marketing et de nouvelles offres visant à améliorer l’expérience et la satisfaction des clients de Nexans, il est responsable des ventes des stations de recharge de véhicules électriques (EVCS) de Nexans.

Les technologies de l’hydrogène : Au cœur de la course vers zéro émission nette
Énergies renouvelables
06 décembre 2022
8 min
hydrogen

La course au “zéro émission” est lancée et, pour franchir la ligne d’arrivée d’ici à 2050, l’industrie doit rapidement développer et implémenter des alternatives aux combustibles fossiles, devenus un fardeau environnemental. Mais quelles sources d’énergie ont le pouvoir de les remplacer ?

Bien que l’électricité soit le leader incontesté en matière d’alternatives énergétiques plus durables, l’électrification reste insuffisante dans les régions du monde isolées ou dépourvues d’infrastructures électriques solides. Et c’est sans parler des secteurs où les émissions de gaz à effet de serre sont dites “difficiles à abattre” comme la sidérurgie ou les mobilités intensives.

C’est là que l’hydrogène intervient. Ce gaz est déjà utilisé comme réactif chimique dans des industries telles que le raffinage du pétrole et l’agrochimie, à raison de 90 millions de tonnes par an. Un boom s’annonce, puisque la demande devrait être multipliée par 4, voire 6, d’ici 2050. La production par électrolyse de l’eau représenterait alors plus d’un quart de la demande mondiale d’électricité !

Décarboner l’hydrogène

Mais l’hydrogène est-il vraiment vertueux ? L’impact environnemental de ses procédés de production varie énormément. Cela a donné lieu à un système informel et déconcertant de classification par code couleur. Aujourd’hui, la grande majorité de l’hydrogène est issu du reformage du méthane à la vapeur, avec 10 kg de CO2 émis pour chaque kilogramme de H2. Ce type de production est responsable de 2 à 3 % des émissions mondiales de CO2, au même titre que le transport aérien !

Il est également possible de produire de l’hydrogène par électrolyse. Ce procédé, qui sépare les molécules d’eau en oxygène et en hydrogène, est gourmand en énergie : 50 à 60 kWh permettent de produire 1 kg d’hydrogène. Mais lorsque les électrolyseurs sont reliés à des sources d’énergie renouvelables, il est possible d’obtenir de l’hydrogène bas carbone.

Cependant, sa faible densité à température ambiante signifie qu’il doit être comprimé à des pressions élevées – jusqu’à 700 bars – ou liquéfié en le refroidissant à très basse température – -253°C (20K) – pour pouvoir le transporter et le stocker dans des volumes acceptables.

Par ailleurs, l’emprunte carbone de l’hydrogène produit par électrolyse de l’eau dépend du mix énergétique de la source d’électricité. Dans certains pays où les centrales électriques au charbon sont nombreuses, la production d’hydrogène par électrolyse pourrait s’avérer plus émettrice en CO2 que le vaporéformage.

Des défis et de la pression

De nouvelles applications de l’hydrogène émergent dans les domaines de l’énergie et de la mobilité bas-carbone. Mais pour qu’elles voient réellement le jour, de grands changements doivent être opérés sur l’ensemble du cycle de vie.

Cela commence par la production. Pour que l’hydrogène contribue véritablement à un monde sans émissions nettes, l’énergie utilisée pour l’électrolyse doit provenir de sources renouvelables telles que des parcs éoliens et solaires terrestres ou offshore, que Nexans relie déjà. Cela aura un impact direct sur le prix de l’hydrogène, qui dépendra alors des coûts de l’électricité et des investissements dans les fermes de renouvelables et les électrolyseurs.

Une fois produit, l’hydrogène doit encore atteindre l’utilisateur final, et le choix des bonnes solutions de stockage et de transport pourraient faire la différence entre le succès et l’échec. Un seul kilogramme d’hydrogène occupe 12m³ à la pression atmosphérique, et de très hautes pressions (jusqu’à 700 bars) sont nécessaires pour ramener ce volume à des niveaux acceptables.

La solution ? Liquéfier l’hydrogène. L’hydrogène liquéfié est historiquement employé dans les industries de technologie de pointe telle que l’aérospatiale depuis des décennies, et de nouvelles applications de l’hydrogène liquéfié (LH2) apparaissent, comme par exemple :

  • Transport maritime d’énergie entre les lieux de production et de consommation. Le projet Hystra – qui consiste à produire de l’hydrogène en Australie et à l’expédier par cargo au Japon – a été une première mondiale, rendue possible grâce aux lignes de transfert cryogéniques haute flexibilité de Nexans. Plusieurs projets visant à déployer les infrastructures de transport maritime du LH2 démarrent actuellement dans les principaux ports maritimes afin de préparer le futur commerce mondial du LH2.
  • Aéronautique. Airbus a pour objectif de faire voler le premier avion commercial alimenté en LH2 en 2035. Cela impliquera une refonte radicale des infrastructures aéroportuaires pour fournir de l’hydrogène, de l’électricité et des carburants d’aviation durables, dans des lieux où la sécurité et l’espace au sol constituent des enjeux majeurs.

L’innovation à chaque étape

Nexans propose des technologies et solutions commerciales innovantes tout au long de la chaîne de valeur de l’hydrogène.

  • Du côté de la production, nous fournissons des solutions pour optimiser les dépenses d’exploitation et d’investissement liées à la production d’énergie renouvelable. Appliqué aux unités d’électrolyse, notre savoir-faire unique en matière de conception de réseaux électriques pourrait contribuer à l’optimisation des installations de production d’hydrogène.
  • Du côté du stockage et de la distribution, Nexans est depuis longtemps un pionnier des infrastructures d’approvisionnement en fluides cryogéniques. Nos lignes de transfert flexibles et isolées sous vide offrent des solutions faciles à installer, sûres et fiables pour le transfert de réservoir à réservoir du LH2. Notre installation “plug-and-play” est aussi simple que la pose d’un câble électrique et surpasse les systèmes rigides conventionnels en termes de rapidité de mise en œuvre. Nous avons récemment équipé les premiers systèmes de chargement au monde pour le transfert de LH2 de navire à terre à Kobe, au Japon, avec des lignes de transfert cryogéniques de grande longueur et de haute flexibilité, capables d’assurer des débits élevés, de nombreux cycles de flexion et une évaporation minimale.
Clean hydrogen policy priorities

Clean hydrogen policy priorities – Source: Irena

Le futur est hybride

Combinés intelligemment, l’électrification et l’hydrogène se complètent pour contribuer à un approvisionnement énergétique plus efficace et bas-carbone. En poussant plus loin la complémentarité entre les deux vecteurs énergétiques, nous développons actuellement de nouveaux concepts de lignes hybrides capables de véhiculer à la fois l’hydrogène et l’électricité dans le même système, notamment :

  • Systèmes ombilicaux sous-marins permettant de transférer l’hydrogène, les données et l’électricité entre les unités de production en mer, telles que les parcs éoliens ou les îles énergétiques, et la terre ferme ;
  • Systèmes supraconducteurs combinant le transfert de LH2 et la supraconductivité pour des autoroutes énergétiques hybrides capables de transmettre des quantités impressionnantes d’énergie sur de longues distances et de contribuer à la modernisation des réseaux électriques.

En fin de compte, la transition vers le “zéro émission” nécessitera une combinaison judicieuse de nombreuses sources d’énergie et technologies interdépendantes. Avec l’électrification, Nexans permet à l’hydrogène de devenir un élément sûr, efficace, économiquement et écologiquement viable de l’approvisionnement énergétique de demain.

Anthony Combessis

Auteur

Anthony Combessis est responsable de la Techno-plateforme Hydrogène, au sein de Nexans Innovation Services and Growth. Il est chargé d’identifier et de développer des innovations et de nouvelles opportunités de marché pour Nexans dans l’écosystème de l’hydrogène, avec un accent particulier sur les solutions cryogéniques. Anthony a rejoint Nexans en 2011 en tant que chef de projet R&D et travaille sur les propriétés électriques vs physico-chimiques des polymères, l’instrumentation et les nanocomposites. Il est titulaire d’un doctorat en nanocomposites polymères de l’Université de Grenoble, France.

Plastique circulaire, une approche axée sur les ressources
Économie circulaire
03 novembre 2022
8 min
circular plastic

Le plastique est néfaste pour l’environnement : tout le monde le sait et chacun fait des efforts pour l’éviter, ou au moins pour mieux le trier. Pourtant, il est encore essentiel dans de nombreux domaines. C’est en effet le cas pour la conception des câbles en raison de ses propriétés exceptionnelles : mécaniques, diélectriques, transformabilité, durabilité…

Le problème réside dans la mauvaise gestion des flux de déchets qui mettent en danger les écosystèmes à travers le monde :

Pour faire face au volume croissant de plastique produit, utilisé et jeté, les industries doivent évoluer vers un modèle entièrement circulaire dans lequel les produits plastiques en fin de vie ne sont pas jetés mais transformés pour créer de la valeur. L’innovation, la réglementation et la collaboration internationale sont nécessaires pour permettre cette transition.

Outre les problèmes de pollution et de gestion des ressources, les matières plastiques ont un impact sur les gaz à effet de serre. En effet, le kilo de polyéthylène produit en Europe pour la fabrication de plastique a une empreinte carbone d’environ 1,8 kg d’équivalent CO2.

Matière plastique : polyvalente et inévitable

La production de plastiques à l’échelle industrielle a véritablement commencé dans les années 1940 et a rapidement augmenté dans les années 1950. Plus de 8 milliards de tonnes de plastiques ont été produites dans le monde depuis 1950, ce qui en fait un matériau manufacturé largement utilisé (Geyer et al., 2017).

Les plastiques offrent divers avantages, tels qu’un rapport résistance/poids élevé et la possibilité d’adapter leurs propriétés physiques pour être durs ou mous selon les besoins. Cette polyvalence et cette durabilité, associées au faible coût de production des plastiques, sont la principale raison pour laquelle les plastiques sont actuellement utilisés dans presque tous les secteurs.

Une transition nécessaire vers le plastique circulaire

Aujourd’hui, presque tout le plastique est dérivé de matériaux fabriqués à partir d’énergie fossile (principalement du pétrole et du gaz). Cela pose plusieurs problèmes :

Selon l’OCDE, “la pollution par les plastiques augmente inexorablement alors que la gestion des déchets et le recyclage laissent à désirer”. En effet, on estime que seuls 9 % des déchets plastiques sont recyclés, et que 22 % sont mal gérés. En raison de la durabilité et de la résistance du matériau, les déchets plastiques restent dans l’environnement et mettent des décennies, voire des siècles, à se décomposer naturellement. Ils entraînent la perte de la biodiversité et l’altération des écosystèmes (MacLeod et al., 2021).

Heureusement, une transition des matériaux plastiques est possible :

  • Le recyclage : bien que le recyclage soit actuellement la solution la plus simple et la plus utilisée pour transformer les déchets plastiques en nouveaux produits, des efforts peuvent être faits en termes de tri et de séparation. Parmi toutes les voies de recyclage, on distingue : la réutilisation simple (réutilisation directe des déchets au sein des processus de fabrication par exemple), le recyclage mécanique (broyage/pulvérisation après un tri/séparation par exemple) et le recyclage chimique (dissolution, dépolymérisation ou conversion). Ces technologies permettent d’aborder le recyclage de la grande famille des plastiques avec différents niveaux de complexité et de qualité.
chemical recycling technologies infographic

© Cefic – Infographie montrant comment les technologies de recyclage chimique peuvent contribuer à passer d’une économie linéaire du plastique à une économie circulaire

  • L’éco-conception : Le principe de l’éco-conception consiste à prendre en compte l’ensemble du cycle de vie du produit, des matériaux utilisés jusqu’à sa récupération et son recyclage et d’en tenir compte très tôt, c’est-à-dire dès la conception du matériau. Cela signifie par exemple utiliser des matériaux recyclés ou biosourcés, augmenter la durée de vie des produits, sélectionner les matériaux pour faciliter le recyclage, diminuer le poids des plastiques utilisés…

Nexans et les plastiques circulaires

Le défi majeur de l’activité industrielle est de limiter drastiquement l’impact sur l’environnement. Trois grandes questions sont liées entre elles :

  • l’impact sur les gaz à effet de serre et le climat,
  • l’impact sur les ressources, notamment le cuivre et l’aluminium ainsi que les matières plastiques,
  • l’impact sur la biodiversité, qui nécessite la substitution de certains additifs (par exemple les substances REACH) et la maîtrise de l’ensemble du cycle de vie afin de limiter et d’éliminer la pollution.

Les défis environnementaux sont au cœur du développement des solutions de câblage de Nexans. Nous nous engageons à réduire l’empreinte environnementale de nos câbles grâce à la sélection des matériaux. Plus que jamais, Nexans vise à inventer des matériaux innovants qui allient éco-conception, performance, durabilité et recyclabilité.

Étendre l’utilisation des matériaux recyclés

L’incorporation de matériaux recyclés dans les nouveaux produits est un défi pour toutes les industries. Nexans a lancé une initiative à l’échelle du groupe visant à utiliser 30 à 60 % de plastiques recyclés dans les différentes familles de câbles de la chaîne d’électrification.

Recycler nos déchets

Nexans s’efforce d’améliorer le recyclage des câbles en fin de vie et propose de collecter les déchets de ses clients par le biais de Nexans Recycling Services. Par ailleurs, Nexans a pour objectif de recycler 100% de ses déchets de production d’ici 2030, dans une dynamique d’économie circulaire. Le tri et la valorisation des déchets plastiques sont aujourd’hui au centre de plusieurs projets de R&D pour répondre à tous les points de blocage (ex : anciens additifs, séparation des mélanges plastiques, recyclage des polymères réticulés…).

Eco-conception de nos câbles

Les efforts actuels de valorisation des câbles existants en fin de vie mettent en évidence des problèmes de fond liés à leurs conceptions complexes ou à leurs différents composants. Les nouveaux produits sont désormais créés avec une forte volonté d’éco-conception, notamment :

  • Limiter et remplacer les substances dangereuses,
  • Développer des matériaux plastiques plus facilement recyclables,
  • Simplifier la conception des câbles,
  • Améliorer la durée de vie des câbles.

L’innovation sera la clé de la transition d’un modèle linéaire à un modèle circulaire pour les matières plastiques. Elle nécessite le développement de technologies spécifiques, mais devra également inclure des éléments de la chaîne d’approvisionnement et du modèle économique qui ne seront possibles que grâce aux écosystèmes.

Jean-François Larché

Auteur

Jean-François Larché est Team Leader Advanced Materials au sein du département Innovation, Services et Croissance d’Ampacity, le centre d’innovation de Nexans à Lyon. Il travaille sur le développement des matériaux de manière transversale pour le Groupe avec un accent sur la durabilité des produits (contenu recyclé, recyclabilité…). Il a rejoint Nexans en 2011 en travaillant pendant 8 ans principalement sur la durabilité des câbles.

L’éolien et le solaire offshore flottants
Énergies renouvelables
08 juillet 2022
9 min
floating offshore wind and solar

La technologie flottante est une tendance dans le monde des énergies renouvelables. Nous en examinons les moteurs et découvrons comment Nexans contribue à faire du rêve de l’éolien offshore flottant – et du solaire – une réalité.

La production d’énergie éolienne en mer a connu une croissance considérable au cours de la dernière décennie. La capacité offshore mondiale atteint désormais 35 GW, soit près de neuf fois plus qu’en 2011. Une capacité offshore supplémentaire de 235 GW est attendue d’ici 2030, portant le total mondial à 270 GW.

Un vent de changement

La technologie des turbines a fait d’énormes progrès depuis l’apparition des premiers parcs éoliens dans nos océans, il y a plus de vingt ans. Les turbines d’aujourd’hui sont plus grandes et plus efficaces que jamais, avec des diamètres de rotor de plus de 200 mètres et des puissances de 10 MW et plus. Ces progrès ont joué un rôle essentiel dans la baisse du coût de l’éolien offshore.

Presque toutes les éoliennes offshore existantes aujourd’hui dépendent de fondations fixées sur le fond, qui constituent une bonne solution dans les eaux relativement peu profondes – jusqu’à 60 mètres de profondeur. Ces fondations sont des semelles en acier et en béton qui fixent la structure de l’éolienne directement au fond de la mer.

La grande majorité des océans et des mers ont des eaux dont la profondeur dépasse 60 mètres – et c’est là que l’on trouve les vents les plus forts et les plus constants. En Europe, par exemple, 80 % des ressources éoliennes se trouvent dans des eaux d’une profondeur de 60 mètres ou plus. Les fondations conventionnelles ne sont pas rentables dans ces situations. Il existe donc de vastes zones où les ressources éoliennes sont inexploitées.

De nouveaux horizons pour l’éolien offshore

Les éoliennes flottantes permettent de surmonter le problème des fondations en eaux profondes. Au lieu d’être ancrées au fond de la mer, les turbines sont montées sur une sous-structure flottante qui est attachée par des lignes d’amarrage et des ancres.

Tout cela change la donne pour l’éolien offshore. Au lieu d’être limitées à une profondeur de 60 mètres, les turbines flottantes peuvent être déployées dans des eaux allant jusqu’à 1000 mètres de profondeur – et potentiellement beaucoup plus.

Cela offre un potentiel intéressant pour étendre la portée géographique de l’éolien offshore. La partie nord du bassin de la mer du Nord en est un exemple. La profondeur des eaux y dépasse généralement de loin les 60 mètres, ce qui les met hors de portée des fondations conventionnelles.

Hywind Scotland au Royaume-Uni – le premier parc éolien flottant au monde – illustre ce qui peut être réalisé. Situé à environ 30 km au large des côtes dans des eaux pouvant atteindre 120 mètres de profondeur, Hywind est en service avec succès depuis 2017. Hywind présente le facteur de capacité le plus élevé de tous les parcs éoliens du Royaume-Uni : en 2020, il a établi un nouveau record britannique en atteignant un facteur de capacité moyen de 57,1 %. À titre de comparaison, la moyenne de l’éolien offshore au Royaume-Uni est d’environ 40 %.

La technologie de l’éolien flottant devrait avoir un impact bien au-delà de la mer du Nord, notamment dans les régions où la mer est très profonde et très proche du rivage. Citons par exemple le bassin méditerranéen, la côte ouest des États-Unis, la Corée du Sud et le Japon, qui disposent tous d’énormes ressources éoliennes en mer qui ne demandent qu’à être exploitées. L’éolien flottant peut également être déployé dans des eaux peu profondes où les conditions du fond marin empêchent l’utilisation de fondations conventionnelles.

Faire de l’éolien flottant une réalité

Actuellement, l’éolien flottant ne représente que 0,1 % du total de l’éolien en mer. Mais cette situation est appelée à changer. Les prévisions du Conseil mondial de l’énergie éolienne suggèrent que d’ici 2030, l’éolien flottant pourrait représenter 6,1 % de toutes les nouvelles installations, avec une capacité ajoutée estimée à 16,5 GW au cours des dix prochaines années. Des technologies robustes et rentables sont la clé pour atteindre cet objectif.

L’un des grands défis techniques de l’éolien offshore flottant est l’exportation de l’électricité qu’il produit. Trois facteurs entrent en jeu. Premièrement, les câbles reliant les parcs éoliens à la côte sont plus longs, car les turbines sont généralement situées plus loin en mer. Deuxièmement, les niveaux de puissance à gérer augmentent avec la taille des turbines. Troisièmement, et c’est le plus important, des câbles dynamiques sont nécessaires. Ils doivent être capables de s’adapter aux mouvements de la structure flottante causés par les courants, les marées et le vent. La résilience est essentielle.

Des câbles dynamiques plus intelligents

L’expérience de Nexans en matière de systèmes de câbles sous-marins haute tension et de câbles dynamiques en fait le partenaire idéal pour le développement de l’éolien flottant. En effet, Nexans a fourni des câbles dynamiques pour les projets d’éoliennes flottantes Hywind Demo et Hywind Scotland. L’expérience de l’entreprise a des racines profondes : Nexans a développé son premier câble dynamique en 1983.

Aujourd’hui, l’innovation se poursuit. L’accent est désormais mis sur le développement de câbles dynamiques HT capables de supporter une puissance et des tensions plus élevées que jamais. Cette nouvelle génération de câbles sera plus légère et plus souple que les câbles sous-marins traditionnels. Ils seront également plus intelligents, grâce à l’intégration d’éléments en fibre optique permettant une surveillance en temps réel – fournissant des informations essentielles sur les différents paramètres des câbles et garantissant des années de fonctionnement fiable.

Éoliennes flottantes : Les gratte-ciel de la mer

Dans cet épisode de What’s Watt, Frédéric Lesur et Maxime Toulotte, nous présentent les tenants et les aboutissants des éoliennes flottantes. Comment elles sont installées, comment elles produisent de l’énergie et quelle quantité d’énergie elles peuvent générer à partir des vents marins. Préparez-vous à affronter de fortes rafales, car vous risquez d’en prendre plein les yeux.

L’énergie solaire flottante en mer

L’énergie solaire flottante à l’échelle industrielle est l’une des technologies renouvelables qui connaît la plus forte croissance. Des panneaux photovoltaïques sont montés sur des radeaux ancrés en pleine mer et des câbles sous-marins acheminent l’énergie vers la terre.

L’aspect le plus difficile du projet du point de vue du câblage est la gestion de la charge dynamique, causée par le mouvement de la plateforme en réponse au vent, aux vagues et aux marées. Nexans utilise un câble tripolaire d’un type éprouvé dans les parcs éoliens offshore et les installations de pisciculture. Le câble de 5 km est fabriqué dans notre usine de Rognan en Norvège.

L’intérêt de l’énergie solaire flottante est qu’elle élargit considérablement la surface disponible pour l’installation de panneaux solaires, sans qu’il soit nécessaire d’acquérir des terrains. La croissance du secteur de l’énergie solaire flottante est forte. Près de 10 GW de nouvelles capacités flottantes devraient être déployées d’ici 2025.

Maxime Toulotte

Auteur

Maxime Toulotte est à la tête du département de marketing technique du groupe d’activités Subsea and Land Systems (SLS) de Nexans, où il est responsable du développement et de l’entretien des relations avec les départements techniques et ingénierie des clients et partenaires du Groupe dans le secteur des câbles haute tension sous-marins.

Maxime a occupé différents postes de responsable des ventes et des appels d’offres ou encore d’ingénieur en chef sur des projets de câbles HT sous-marins.

Il est titulaire d’un diplôme d’ingénieur en génie électrique de Grenoble INP.

La révolution du courant continu
Des technologies pionnières pour l’électrification de demain
Électrification de demain
14 juin 2022
7 min
Direct current renaissance

Après plus d’un siècle passé dans l’ombre, le courant continu pourrait bien prendre sa revanche.

Les dernières années du 19ème siècle ont été marquées par une bataille acharnée autour de la meilleure méthode d’approvisionnement des consommateurs en électricité, opposant d’un côté le courant continu (promu par Thomas Edison) et de l’autre le courant alternatif (soutenu par Nikola Tesla). C’est le second qui l’a emporté et domine le monde depuis lors.

L’histoire aurait pu s’arrêter là mais deux facteurs en ont décidé autrement. D’une part, le courant continu se révèle remarquablement efficace pour le transfert massif d’électricité sur de longues distances – c’est d’ailleurs l’un de ses usages depuis des décennies. D’autre part, nous utilisons un nombre croissant d’équipements électriques fonctionnant au courant continu : téléphones mobiles, éclairages LED, véhicules électriques…

Tout cela conduit à réévaluer l’intérêt du courant continu pour le transport, la distribution voire la consommation d’électricité par l’utilisateur final. Que pourrait-il en être dans la pratique ?

Transport en courant continu

Le transport est le transfert massif d’énergie électrique, typiquement sur de longues distances, au moyen de conducteurs aériens ou de câbles souterrains (ou sous-marins). L’utilisation du courant continu haute tension (CCHT) pour le transport d’électricité présente un certain nombre d’avantages par rapport à l’alternatif haute tension.

Tout d’abord, le CCHT nécessite moins de matériel : seulement deux conducteurs au lieu de trois pour l’alternatif. Ensuite, les pertes électriques sont moindres en courant continu car seule la puissance active est transférée (alors que le courant alternatif transfère à la fois la puissance active et réactive). Enfin, la longueur possible des liaisons de transport est bien plus grande dans le cas du courant continu grâce à l’absence de puissance réactive.

Le CCHT est une technologie éprouvée, qui ne cesse de se perfectionner au fil du temps. Parmi les récentes évolutions figurent notamment les convertisseurs de source de tension (VSC) et l’accroissement de la capacité de transport des câbles. Cette avancée est imputable à l’augmentation des tensions, des températures de fonctionnement, de la section des conducteurs, ainsi qu’à l’apparition de la fabrication par extrusion. Il en résulte une réduction de l’empreinte au sol et du coût des projets CCHT relativement à l’énergie transférée. En bref, le transport CCHT devient nettement plus compétitif.

L’avenir radieux du CCHT

Deux tendances majeures du marché sont à l’origine du regain d’intérêt pour le transport CCHT. La première est la demande croissante d’interconnexion des réseaux électriques, par-delà les frontières et les océans. La seconde tient à la multiplication des parcs éoliens offshore, avec leurs câbles sous-marins d’exportation à terre.

À ce jour, quelque 15 000 km de câbles sous-marins CCHT ont été posés, employant les procédés d’imprégnation de matière (IM) ou d’extrusion XLPE (polyéthylène réticulé). 20 000 km supplémentaires d’interconnecteurs CCHT devraient être déployés d’ici 2030, sans compter les câbles d’exportation des parcs éoliens offshore. Le parc installé de câbles extrudés devrait s’étendre et égaler la longueur des câbles IM avant la fin de cette décennie. Les fabricants de câbles sous-marins CCHT se positionnent sur ce marché en investissant dans l’accroissement de leurs capacités de production et de pose.

Le courant continu pourrait-il aussi servir pour la distribution ?

Les réseaux de distribution moyenne tension (MT) et basse tension (BT), ainsi qu’à l’intérieur des bâtiments, sont dominés depuis longtemps par le courant alternatif. Cependant, la transition progressive vers le courant continu – permise par le développement des microréseaux BT et MT– pourrait amener des économies d’énergie, améliorer l’interopérabilité, faciliter l’intégration des énergies renouvelables et augmenter la durabilité.

L’intérêt pour les micro-réseaux en courant continu est motivé par des changements fondamentaux dans les modes de production, de stockage et de consommation de l’électricité.

Premièrement, la production d’électricité est de moins en moins centralisée et se rapproche des sources de demande, à l’exemple du solaire photovoltaïque sur les toits et du petit éolien. Les panneaux photovoltaïques produisent naturellement du courant continu, tout comme certaines micro-éoliennes.

Deuxièmement, les batteries se généralisent pour le stockage de l’électricité, par exemple dans les onduleurs. Elles sont utilisées par les entreprises, notamment au sein des data centers, pour sécuriser leur approvisionnement en énergie. Des systèmes de stockage d’énergie sur batteries (BESS) sont également de plus en plus déployés pour l’équilibrage des réseaux. En outre, des systèmes domestiques de ce type commencent à être disponibles. Surtout, les batteries des véhicules électriques offrent un potentiel d’intégration au réseau. L’un des aspects essentiels du stockage sur batterie est que la majeure partie est distribuée plutôt que centralisée et que la totalité fonctionne en courant continu.

Troisièmement, côté consommation, les équipements en courant continu sont aujourd’hui légions et leur adoption est en plein essor, comme souligné plus haut : smartphones, ampoules LED, véhicules électriques… Jusqu’à présent, tous dépendent d’un adaptateur pour la conversion alternatif-continu.

Autant de facteurs qui créent un terrain propice pour des micro-réseaux en courant continu réunissant la production et la consommation, avec un stockage de secours sur batteries, y compris celles des véhicules électriques. L’un des attraits de ce modèle est qu’il élimine la nécessité d’une conversion alternatif-continu et donc d’un adaptateur, ce qui aboutit en soi à une économie d’énergie.

AC/DC, Courants… et des reprises de Rock N’ Roll

Dans cette vidéo What’s Watt, Frédéric Lesur explique la différence entre courant alternatif et courant continu, tout en offrant des performances électrisantes pour dynamiser votre expérience de visionnage.

Comment Nexans favorise-t-il le courant continu ?

Nexans est un leader du marché des câbles CCHT sous-marins et investit continuellement dans le développement de ses capacités de fabrication et de déploiement. En 2021, nous avons lancé le Nexans Aurora, le navire câblier le plus avancé au monde. Le Groupe est bien placé pour accompagner les besoins futurs des opérateurs de réseaux de transport comme des promoteurs de parcs éoliens.

Alors que les installations en courant continu (CC) se multiplient dans le secteur du transport haute tension, l’étape suivante pourrait consister en des microréseaux CC moyenne et basse tension. Ceux-ci devront utiliser des câbles, accessoires et connecteurs optimisés pour être viables sur le plan technique. Il leur faudra également satisfaire aux exigences de fiabilité, d’efficacité énergétique, de durabilité et de sécurité.

Hans Kvarme

Authors

Hans Kvarme est responsable de la Techno Platform HVDC XLPE, gérant toutes les activités de R&D liées aux câbles XLPE HVDC pour le Business Group Subsea and Land Systems de Nexans. Cela implique la recherche et le développement, mais aussi la qualification de lignes d’extrusion, de matériaux, de procédés et d’accessoires nouveaux et existants.

Auparavant, Hans a occupé chez Nexans les postes de directeur de l’ingénierie et du développement de nouveaux produits au sein de la division Innovation, Service et Croissance, et de chef de département Ingénierie des appels d’offres au sein de SLS.

Il est titulaire d’une maîtrise en génie électrique et environnemental de l’université norvégienne NTNU.

Samuel Griot

Samuel Griot est responsable du département ingénierie électrique au sein du service Innovation et Croissance.

Il dirige une équipe d’experts développant de nouvelles solutions innovantes pour les applications basse, moyenne et haute tension afin de répondre aux besoins futurs des réseaux électriques. Samuel a rejoint Nexans en 2021 et possède une solide expérience en architecture de réseaux électriques et en appareillage de commutation.

Il est titulaire d’un Master en génie électrique de l’INSA de Lyon, France.