Des bâtiments durables pour un avenir meilleur
Électrification de demain
12 octobre 2023
9 min
Sustainable buildings

De nos jours, fortement engagés dans la réduction des émissions de gaz à effet de serre (GES), les gouvernements du monde entier font pression sur le secteur de la construction et du bâtiment pour qu’il réduise ses émissions carbonées et sa consommation de matières premières.

Et pour cause. Les bâtiments commerciaux et résidentiels sont responsables de presque 40 % des émissions de gaz à effet de serre (GES) et consomment 30 % de l’énergie finale au niveau mondial. La décarbonation du secteur du bâtiment et de la construction est critique pour atteindre l’objectif « zéro émissions nettes » en 2050. Cela nécessite des changements fondamentaux dans la manière de concevoir, construire et exploiter les bâtiments partout dans le monde. Cette évolution demande au secteur de favoriser des matériaux de construction et des pratiques plus compatibles avec l’environnement, d’adopter des stratégies plus efficaces sur le plan des matériaux et de réduire l’utilisation des matières premières.

Des matériaux de construction innovants

Le passage aux matériaux de construction bas carbone innovants est essentiel pour réduire l’impact environnemental du secteur du bâtiment et de la construction. Non seulement le béton est le matériau de construction le plus utilisé, mais il est responsable de 8 % des émissions mondiales de GES.

Une alternative viable au béton traditionnel est la brique bas carbone fabriquée à partir de matériaux recyclés, ou la brique traditionnelle en argile cuite dans un processus bas carbone, utilisant du biogaz provenant des déchets, de la méthanisation de biomasse ou de l’énergie solaire ou éolienne.

Saint-Gobain, par exemple, qui fabrique des matériaux de construction, ouvre la voie des produits bas carbone plus durables. Cette année, cette société d’envergure mondiale a annoncé la production de plaques de plâtre zéro carbone dans son usine modernisée de Fredrikstad, en Norvège. La décarbonation du processus de fabrication a été rendue possible par le passage du gaz naturel à l’hydroélectricité, ce qui évite l’émission annuelle de 23 000 tonnes de CO2. En outre, la société est la première du secteur à produire du verre plat zéro carbone, grâce à l’utilisation exclusive de verre recyclé (calcin) et d’énergie verte issue du biogaz et d’électricité décarbonée.

Les matériaux éco compatibles tels que le chanvre et le lin sont des alternatives viables pour réduire l’impact environnemental du secteur. Cavac Biomatériaux, spécialisée dans l’utilisation industrielle des fibres végétales, fabrique des isolants à partir du chanvre et du lin.

Des stratégies plus efficaces sur le plan des matériaux

Le Rapport sur la situation mondiale 2022 des bâtiments et de la construction prévoit un doublement de la consommation mondiale de matières premières d’ici 2060. D’après ses auteurs, la mise en œuvre de stratégies plus efficaces sur le plan des matériaux comporte un potentiel énorme de réduction des émissions de GES pour le secteur du bâtiment.

De plus, dans les pays du G7, les stratégies d’efficacité matérielle y compris le recyclage des matériaux pourraient réduire les émissions de plus de 80 % d’ici 2050 dans le cycle des matériaux utilisés dans les bâtiments résidentiels. La Fondation Ellen MacArthur estime qu’au niveau mondial, l’économie circulaire réduirait de 38 % d’ici 2050 les émissions de CO2 liées aux matériaux de construction.

Le passeport numérique des produits (DPP) est une initiative cruciale du plan d’action pour une économie circulaire de l’Union Européenne. Cette initiative vise à faire des produits durables la norme dans l’UE en facilitant la transparence tout au long de la chaine de valeur et en favorisant les modèles d’économie circulaire. L’adoption d’un modèle d’économie circulaire dans le secteur du bâtiment et de la construction est cruciale pour atteindre d’importants objectifs de durabilité.

Réduire l’utilisation de matières premières

On estime que les matériaux et les produits de construction consomment 50 % de tous les matériaux extraits de l’écorce terrestre, et que les activités de démolition représentent 50 % de tous les déchets générés. Pour réduire l’empreinte environnementale de ses câbles, Nexans utilise une part croissante de matériaux à faible impact dans toute la chaîne de valeur.

Il est prévu que la disponibilité de matières premières importantes continuera à baisser dans les années à venir. Cela concerne par exemple le cuivre, un composant essentiel des câbles et des fils électriques par sa grande conductivité et sa robustesse. L’extraction du cuivre ne pouvant plus répondre à la demande mondiale, 40 % de la production de cuivre s’appuie sur le cuivre recyclé.

Depuis plus de 35 ans, Nexans recycle les rebuts de cuivre et d’aluminium dans le cadre de sa politique de développement durable, pour réduire l’utilisation de matières premières et promouvoir un modèle d’économie circulaire. En 2008, Nexans et SUEZ ont lancé RECYCÂBLES, le leader du recyclage des câbles et des métaux non ferreux en France. Cette coentreprise traite chaque année 36 000 tonnes de câbles, générant 18 000 tonnes de grenaille de métal et 13 000 tonnes de plastique. La combinaison de plusieurs technologies de pointe permet de produire de la grenaille de cuivre pure à 99,9 %.

Aujourd’hui, Nexans utilise jusqu’à 15 % de cuivre recyclé dans sa fabrication de câbles et vise à utiliser de l’aluminium recyclé en 2024. L’emploi de cuivre, d’aluminium et de plastiques recyclés permet aux clients de Nexans de disposer d’un produit durable sans compromis sur la qualité.

Des matériaux de construction compatibles avec l’environnement

Comme il est prévu que la surface de planchers dans le monde double d’ici 2060, il est vital de mettre en œuvre des matériaux de construction et des pratiques efficaces sur le plan énergétique et compatibles avec l’environnement.

Nexans travaille à améliorer l’impact de ses produits en se procurant des composants qui répondent aux orientations de réduction de la consommation d’énergie, établies par les directives de responsabilité sociale des entreprises (RSE) de l’entreprise.

De plus, la R&D de Nexans pour le développement de ses produits vise à protéger l’environnement et la santé humaine en gérant les substances chimiques utilisées dans les processus de fabrication, et en garantissant que tous les nouveaux projets tiennent compte de l’empreinte environnementale du produit final. Par exemple, à partir de 2025, une grande partie des câbles fabriqués dans l’usine Nexans d’Autun, en France, sera exempte d’halogènes afin de réduire les émissions de gaz toxiques en cas d’incendie.

Pour atteindre l’efficacité énergétique et la neutralité carbone des bâtiments, il est nécessaire d’étudier la manière dont les matériaux de construction sont conçus, fabriqués et utilisés. Cela signifie qu’il faut examiner la chaîne de valeur et changer notre manière de créer, utiliser et réutiliser tous les matériaux – du produit lui-même à son emballage et à son transport – afin de réduire l’impact environnemental global du secteur.

Christophe Demule

Auteur

Christophe Demule est Directeur de l’Innovation Bâtiment chez Nexans, au sein du Département Innovation Service et Croissance. Auparavant, il a occupé le poste de vice-président de l’ingénierie pour notre Business Group Industry Solutions & Projects, mettant à profit son expérience dans le domaine de la fabrication. En 2021, il a conçu et lancé la mise en œuvre de la stratégie d’innovation dans le bâtiment avec la création de six Design Labs dans le monde. En mettant l’accent sur l’expérience utilisateur, et en y associant la méthodologie du Design Thinking, les innovations permettent de résoudre les problématiques de nos clients et apportent une valeur ajoutée à toutes les parties prenantes.

Libérer la puissance des bâtiments à courant continu
Électrification de demain
25 juillet 2023
10 min
Direct current powered buildings

Alors que la demande mondiale d’électricité devrait augmenter de 20 % d’ici à 2030 et que la pression pour passer aux énergies renouvelables se fait de plus en plus forte, la « guerre des courants » est à nouveau d’actualité.

Cette référence renvoie aux années 1880, quand Westinghouse et Edison confrontaient leurs visions respectives de la distribution d’électricité. Mais à l’époque, l’infrastructure de transmission du courant continu (CC) était aussi coûteuse qu’inefficace. C’est donc l’approche de Nikola Tesla, utilisant le courant alternatif (CA), qui a finalement remporté cette bataille, et notre infrastructure électrique est encore aujourd’hui dominée par la technologie du courant alternatif. Mais le vent du changement s’est levé.

Aujourd’hui, plus de 70 % des appareils dans le bâtiment ont besoin de courant continu pour fonctionner. Selon EMerge Alliance, la conversion du courant alternatif en courant continu entraîne un gaspillage d’énergie qui peut s’élever jusqu’à 20 %. Réduire le besoin de conversion peut avoir des implications majeures, en termes d’économies d’énergie et d’impact sur l’environnement. Il est devenu essentiel de réduire, voire d’éliminer, ce besoin de conversion dans les bâtiments.

L’International Energy Agency indique qu’en 2021, le fonctionnement des bâtiments représentait 30 % de la consommation mondiale d’énergie finale et 27 % des émissions totales du secteur de l’énergie. Les gouvernements exercent de plus en plus de pression sur le secteur du bâtiment, avec des directives ambitieuses en matière de performance énergétique, afin de réduire l’empreinte carbone des bâtiments. Des directives telles que « le bâtiment à énergie zéro » (en anglais « Zero-Energy Buildings ») en Europe et aux Etats Unis, œuvrent pour des bâtiments nécessitant peu d’énergie, issue de sources renouvelables, produites sur place ou à proximité.

De telles directives, ainsi que l’intérêt croissant pour l’autoconsommation, le stockage sur batteries et les appareils alimentés en courant continu (éclairage LED, systèmes de chauffage, de ventilation et de climatisation, véhicules électriques et tous les équipements à base de composants électroniques), incitent le secteur du bâtiment à passer à la distribution d’électricité en courant continu.

Vers des systèmes de câbles Courant Continu fiables pour les micro-réseaux CC

S’agissant de la distribution d’énergie électrique, on observe une évolution progressive vers le courant continu en raison de l’intérêt croissant pour les micro-réseaux à basse tension (BT) et à moyenne tension (MT). Cette évolution reflète des changements fondamentaux à l’œuvre, dans la manière dont l’électricité est générée, stockée et consommée. Nous sommes aujourd’hui convaincus que les réseaux à courant alternatif et à courant continu coexisteront dans une large mesure.

Cependant, une connaissance experte du comportement du système d’isolation est essentielle pour garantir la fiabilité des câbles BT et des accessoires dans les bâtiments.

En effet, le comportement des systèmes de câbles LVAC est bien connu, mais pas celui des systèmes LVDC.

L’un des axes de travail du centre de R&D de Nexans – AmpaCity, consiste à optimiser le design des câbles. Cette optimisation est réalisée grâce à la compréhension du comportement électrique des systèmes d’isolation sous contrainte, mais aussi des effets sur la rupture, le vieillissement et la corrosion des câbles à courant continu. Nous sommes également engagés à étudier des polymères plus efficaces pour l’isolation des câbles à courant continu, avec un impact environnemental plus faible que les solutions utilisées pour le courant alternatif.

La transformation des bâtiments en plein essor

Comme indiqué précédemment, la production d’électricité se rapproche de la demande. Les installations solaires photovoltaïques sur les toits deviennent de plus en plus courantes. Selon la stratégie de l’UE en matière d’énergie solaire, l’UE rendra obligatoire l’installation de panneaux solaires sur les toits des nouveaux bâtiments publics et commerciaux d’une superficie utile supérieure à 250 m2 d’ici à 2026 et de tous les nouveaux bâtiments résidentiels d’ici 2029. Or, ces panneaux solaires photovoltaïques sont, par défaut, en courant continu. Autres mesures qui se généralisent : le stockage sur batteries destinées à l’alimentation sans interruption (ASI) dans les centres de données, pour assurer la continuité de l’approvisionnement, et le déploiement croissant des systèmes de stockage d’énergie sur batteries (SSEB) pour l’équilibrage du réseau.

Par ailleurs, ces dernières années, nous avons assisté à l’essor du secteur des véhicules électriques (VE), avec un besoin accru de stations de recharge à courant continu dans les bâtiments commerciaux, résidentiels et de bureaux. Avec des politiques mondiales qui encourageant ou imposent le passage aux VE, le marché des chargeurs connaît une croissance rapide, avec un taux de croissance annuel composé (TCAC) estimé à 29 % entre 2023 et 2050.

Distribution locale d’électricité en courant continu

Le déploiement du courant continu dans le bâtiment offre des avantages importants en termes de sécurité, de coûts et de fiabilité des appareils.

Du point de vue de la sécurité, le courant alternatif est intrinsèquement plus dangereux. Il est communément admis que le risque d’électrocution du corps humain par le courant continu est plus faible que par le courant alternatif, car l’impédance totale du corps humain diminue à mesure que la fréquence augmente. Et pour les catégories à forte croissance, comme les chargeurs de VE, l’adoption du courant continu apporte plus de sécurité.

Le secteur des centres de données représente environ 4 % de la consommation mondiale d’électricité et devrait continuer à croître. Il est donc essentiel de décarboner ce secteur. Dans les bâtiments à forte consommation d’énergie, tels que les centres de données alimentés en courant continu, il serait possible de réaliser une économie de 4 à 6 % par rapport aux installations classiques en courant alternatif.

Outre la réduction des pertes électriques liées au transport par câble, il y a la réduction des pertes de conversion entre courant alternatif et courant continu.

L’alimentation en courant continu des appareils prévus à cet effet permet d’éliminer les pertes de puissance dues à la conversion et ainsi d’éviter un gaspillage d’énergie estimé entre 5 et 20 %. En outre, le processus de conversion au niveau des appareils eux-mêmes peut raccourcir leur durée de vie. Par exemple, la distribution de courant continu directement à un luminaire à LED (évitant ainsi la conversion de courant alternatif en courant continu) peut considérablement prolonger sa durée de vie. Enfin, la distribution électrique en courant continu au niveau du bâtiment réduit le coût et l’encombrement des adaptateurs et convertisseurs.

Une transition en cours vers des bâtiments alimentés en courant continu

En conclusion, la distribution d’énergie à courant continu dans les bâtiments se profile à l’horizon, mais le changement prendra du temps. Si les micro-réseaux à courant continu devraient se généraliser, il reste un certain nombre de défis à relever, notamment l’adoption par les professionnels du secteur. La plupart, en effet, ont tendance à privilégier l’alimentation en courant alternatif, dont ils ont une plus longue expérience.

En outre, il faut faire évoluer les normes et les codes du bâtiment portant sur les appareils alimentés en courant continu, mais aussi analyser plus en détail le gain de rentabilité dans le cadre des rénovations et des nouvelles constructions.

Les câbles, qui sont un élément fondamental de l’infrastructure électrique des bâtiments, sont un acteur essentiel de la transition vers des structures alimentées en courant continu. Les bâtiments de demain seront intelligents, connectés, durables et alimentés en courant continu. Nexans s’engage dans cette transformation en fabriquant des systèmes de câbles spécifiques, compatibles avec ces nouvelles infrastructures. En nous appuyant sur nos partenariats stratégiques et en nous impliquant dans des groupes industriels clés, nous contribuons à la transition vers des bâtiments alimentés en courant continu.

Lina Ruiz

Auteur

Lina Ruiz est responsable des plateformes techniques LVDC, MVDC et nouvelles architectures pour Nexans au sein du Techno Centre Recherche et Territoires.

Elle a précédemment travaillé en tant que chef de projet et chef d’équipe d’innovation technique dans le domaine des énergies renouvelables. En 2023, elle rejoint Nexans pour accélérer le programme d’exploration sur le courant continu basse et moyenne tension. Dans son rôle actuel, elle est chargée de fournir des solutions nouvelles et différenciées dans le domaine du courant continu.

Solutions numériques pour la construction : Une voie vers le progrès
Électrification de demain
18 juillet 2023
8 min
Digitalization in building construction

Un vent nouveau souffle sur le secteur de la construction. Nous l’avons observé ces deux dernières années ; le secteur que l’on appelait « de la brique et du mortier », s’apprête désormais à opérer une révolution numérique. Le secteur a été généralement assez lent à adopter les nouvelles technologies et ceci a fait stagner la productivité, pendant des dizaines d’années. La numérisation du marché de la construction, qui pèse 7 500 milliards de dollars, se fait attendre depuis longtemps.

D’après une enquête mondiale menée par McKinsey en 2022, auprès de plus de 500 cadres du secteur de la construction, plus de 70% d’entre eux prévoient d’augmenter leurs investissements dans l’innovation et la R&D. À tel point que les sondés placent les outils de conception numériques tels que le BIM (building information modeling), les solutions logicielles et l’automatisation, avant le développement durable.

L’investissement dans l’innovation et la R&D deviendrait le principal facteur de différenciation sur le marché, au cours des trois à cinq années à venir. Cette réalité aura des effets en cascade sur l’ensemble de la chaîne de valeur et sera motivée en partie par le changement climatique et la productivité.

Numérisation du secteur de la construction et du bâtiment

La productivité a depuis longtemps été le nerf de la guerre pour le secteur, notamment avec des projets d’investissement, qui accusent en moyenne 20 mois de retard et dépassent jusqu’à 80% le budget initial. L’industrie dans son ensemble, s’applique à utiliser de plus en plus d’outils numériques, de la conception à la construction jusqu’aux opérations, mais à des niveaux différents, selon la phase en question.

Améliorer la productivité implique de combler le fossé entre les systèmes de gestion des document et des produits, afin de simplifier les tâches des opérateurs et d’accroître leur productivité.

Bien que des progrès aient été enregistrés, il y a encore beaucoup à faire pour améliorer la productivité, notamment en ayant recours aux technologies numériques, tout au long du processus : conception, construction et opérations.

Nombre de réglementations gouvernementales visent à décarboner le secteur et la numérisation joue un rôle crucial, afin de réduire les répercussions environnementales des projets de construction, à l’échelle mondiale.

Électrification des bâtiments

Alors que l’électrification des bâtiments va continuer à se développer et à s’étendre, il est essentiel d’assurer un déploiement efficace des solutions de câblage, pour garantir la sécurité et les gains de productivité. Combler le fossé entre les outils de gestion de la productivité et les systèmes de gestion des documents est un premier pas pour faciliter le travail des électriciens. Par ailleurs, face à une pénurie de main-d’œuvre qualifiée, il est nécessaire d’améliorer la traçabilité et l’accès à l’information.

Le lien numérique entre produits physiques et documentations liées fait aujourd’hui défaut. C’est notamment souvent le cas pour les produits électriques – les installateurs ont rarement accès à la documentation à jour. De par l’absence de traçabilité, de nombreuses informations se perdent une fois le travail terminé, notamment l’identité de l’installateur.

Tandis que les bâtiments se détourneront progressivement des combustibles fossiles, en faveur des énergies renouvelables, la demande d’électriciens qualifiés augmentera. À quoi s’ajoutera le besoin de recruter des experts en technologie pour gérer l’afflux de systèmes et d’outils numériques, essentiels pour opérer ce changement au sein de l’industrie.

Le fondement de la révolution numérique

À mesure que le secteur du bâtiment progresse dans sa transformation numérique, la modélisation des données du bâtiment (BIM) deviendra de plus en plus la norme et le fondement des projets de construction. Ce lien entre les éléments physiques du bâtiment et le format numérique qui les accompagne (appelé contenu BIM) facilite les processus de travail tout au long du cycle de valeur d’un projet de construction, de la planification à la conception et de la construction à l’exploitation.

Le contenu BIM permet aux architectes, concepteurs et constructeurs d’accéder facilement aux informations essentielles sur les produits, telles que les instructions d’installation, la consommation d’énergie, les écolabels, les coûts d’exploitation et le cycle de vie des produits. Nexans travaille avec des fournisseurs de BIM pour intégrer ses offres afin de faciliter l’installation, la maintenance et la sécurité des câbles électriques.

Alors que les nouvelles technologies telles que les drones, la robotique et l’impression 3D deviennent de plus en plus courantes sur les chantiers, il est essentiel de s’assurer que le BIM constitue le fondement de la stratégie numérique du secteur de la construction. Selon McKinsey, le passage à la BIM 5D, qui combine des modèles physiques en 3D des bâtiments avec des données sur les coûts, la conception et le calendrier, pourrait entraîner une économie de 10% de la valeur du contrat en détectant les conflits, en réduisant la durée de vie du projet et en réduisant potentiellement les coûts des matériaux de 20%.

Passer de l’analogique au numérique

Le passage de la documentation analogique à la documentation numérique et la traçabilité sont des éléments essentiels, afin que le marché des produits de la construction puisse aller encore plus loin. Il s’agira également de réduire la fragmentation de l’industrie, pour assurer plus de productivité, de sécurité et de rentabilité. Ceci est d’autant plus important dans le cadre de l’électrification des bâtiments, afin de fournir des installations sûres et de mener des opérations en toute sécurité.

Grâce à son application basée sur le cloud, Evermark™, Nexans permet à ses clients d’avoir facilement accès aux informations liées aux produits installés, notamment le suivi de la maintenance, les schémas électriques et les données produits. Grâce à l’étiquetage NFC, Evermark™ crée un lien numérique entre les produits physiques et la documentation liée. Ceci assure ainsi une traçabilité totale des installations électriques, tout au long du cycle de vie des produits (phases d’installation, de maintenance et de remplacement). L’application donne un accès immédiat aux informations importantes sur site et hors site, en réduisant ainsi les coûts et le temps dédié, tout en améliorant la productivité.

Les nouvelles technologies sont synonymes de nouvelles opportunités. Il est essentiel d’intégrer progressivement les nouveaux outils numériques, afin d’enregistrer de meilleurs taux de satisfaction client.

Jenny Nyström

Auteur

Jenny Nÿstrom est Nordics Design Lab & Innovation au sein de Nexans. Elle travaille dans l’industrie du câble depuis près de 20 ans, dans le domaine du marketing et de la gestion des produits, notamment pour les secteurs du bâtiment, des télécommunications et des services publics.

Sécurité incendie dans les bâtiments : une certification holistique pour une protection renforcée
Électrification de demain
04 juillet 2023
10 min
Fire safety and buildings

Aujourd’hui, un incendie se déclare toutes les 30 secondes en Europe, dont 25 % sont dus à des défaillances électriques, soit 275 000 par an. Aujourd’hui, plus de la moitié de la population mondiale vit dans des zones urbaines et la demande en électricité est en constante augmentation : la sécurité électrique des bâtiments devient donc une priorité essentielle.

Or, pour assurer la sécurité des bâtiments contre les incendies, il convient d’adopter une approche globale du risque et de tester et certifier les câbles électriques avec les composants qui leur sont associés.

Pour mettre en œuvre cette approche, nous devons comprendre comment les variations de la consommation électrique et la hausse des exigences de charge affectent la sécurité incendie des bâtiments, qu’ils soient nouveaux ou anciens. On estime que 25 % des incendies sont causés par des défaillances électriques ou des installations obsolètes ou en surcharge. Ce chiffre est encore plus élevé sur les marchés émergents, où 80 % des incendies de bâtiments sont dus à des câbles non conformes.

La sécurité incendie est une préoccupation grandissante dans le monde entier et nous devons veiller à la sécurité des occupants des bâtiments.

L’électricité, au cœur des bâtiments

Le câblage électrique est la colonne vertébrale d’un bâtiment. Dans un immeuble de bureaux, il y a généralement plus de 200 kilos de câbles électriques pour 100 mètres carrés. Les câbles sont donc omniprésents et pourtant, ils passent généralement inaperçus. Dans les bâtiments anciens, il n’est pas rare de constater des négligences dans la mise à niveau des câbles et des systèmes électriques obsolètes au moment des mises aux normes de sécurité modernes. Sans compter qu’avec la hausse de la demande en électricité, les installations des bâtiments anciens sont souvent sous-dimensionnées, ce qui renforce encore le risque d’incendies d’origine électrique.

Aujourd’hui, la plupart des bâtiments anciens nécessitent d’importantes rénovations pour que leurs systèmes électriques soient conformes avec la réglementation et capables de supporter les charges requises par l’activité des bureaux, des bâtiments publics et résidentiels.

Nous savons aujourd’hui que pour assurer la sécurité de l’ensemble d’un bâtiment, l’architecture électrique doit être prise en compte dès les premières étapes de la construction. Dans le monde, il arrive encore trop souvent que l’économie soit menacée par des incendies dans des datacenters alors qu’il existe, souvent, des solutions intégrées. Soulignons que les installations photovoltaïques sont, elles aussi, exposées au risque.

La plupart des bâtiments fonctionnent avec plusieurs combustibles. Ils utilisent évidemment de l’électricité pour les systèmes d’éclairage et les appareils électriques, mais ils consomment également des combustibles fossiles tels que le gaz naturel ou le propane pour les systèmes de chauffage. Cette dépendance persistante à l’égard des combustibles fossiles fait des bâtiments l’une des plus grandes sources de pollution qui réchauffe la planète.

Les termes “électrification des bâtiments” et “décarbonation des bâtiments” décrivent tous la transition des combustibles fossiles vers l’utilisation de l’électricité pour le chauffage et la cuisine.

Outre les systèmes de chauffage et de refroidissement utilisant des pompes à chaleur électriques de dernière génération, des bornes de recharge pour véhicules électriques équiperont systématiquement les bâtiments à l’avenir et contribueront à réduire une source majeure d’émissions de carbone dans les économies développées : la mobilité.

L’objectif d’une telle transition : des bâtiments entièrement électriques alimentés par l’énergie solaire, éolienne et d’autres sources d’électricité sans carbone. En d’autres termes, il ne s’agit pas seulement d’augmenter le niveau d’électrification des bâtiments, mais aussi la fiabilité de leurs réseaux électriques.

Pour une approche plus globale de la certification

Les câbles eux-mêmes sont rarement la cause première des incendies, mais ils sont exposés aux risques au niveau de leurs interconnections avec d’autres équipements, en raison de la nature des arcs électriques. Pour assurer la sécurité incendie des bâtiments, il faut donc pleinement comprendre les interactions entre les différents composants.

Aujourd’hui, les organes de normalisation et de certification s’intéressent aux éléments d’isolation de manière individuelle et non aux interactions entre les différents composants électriques, une situation qui doit alerter le secteur. Heureusement, des organes tels que le National Fire Protection Association (NFPA) & Life Safety Ecosystem™ s’attachent à identifier les composants qui doivent fonctionner ensemble pour limiter au maximum le risque d’incendie.

Pour évoluer en ce sens, il faut changer les mentalités au sein du secteur. Une approche globale et systémique permet d’effectuer des tests pour valider la performance globale du système, en se basant sur l’utilisation des composants en conditions réelles.

L’adoption d’une approche systémique pour la certification nécessite la pleine adhésion des fournisseurs. En effet, ceux-ci devront mettre sur le marché des offres de systèmes intégrés, ayant fait l’objet de tests approfondis et répondant aux exigences de performance des clients et des processus d’installation à sécurité intégrée. Il s’agira de mettre en œuvre des produits électriques modulaires et prêts à l’emploi, réduisant le risque d’erreurs d’installation sur site et garantissant la compatibilité des composants.

La compatibilité, au cœur de l’approche Fire Safety de Nexans

Nexans s’efforce d’assurer les plus hauts niveaux de sécurité électrique et incendie en veillant à ce que ses câbles et ses fils évitent la propagation du feu, limitent les dégagements de fumée et les émissions dangereuses lors d’un incendie, et maintiennent l’intégrité des systèmes de sécurité incendie. Ces principes sont le fondement des solutions et services Fire Safety de Nexans.

Pour limiter les émissions dangereuses, par exemple, l’offre de Nexans Fire Safety se concentre sur les câbles à faible risque d’incendie (LFH pour Low Fire Hazard) et sur l’abandon de matériaux obsolètes tels que le PVC.

Au-delà de notre offre de produits et solutions innovants répondant aux besoins de sécurité de nos clients, nous nous donnons pour mission de faire évoluer le secteur vers la mise en œuvre de tests de compatibilité et de certification des systèmes. C’est à la fois une opportunité de garantir la sécurité incendie des nouvelles solutions et un besoin de plus en plus urgent.

Par exemple, Nexans a récemment adopté une approche systémique dans son offre de recharge pour véhicules électriques. Nous avons sélectionné des partenaires clés pour construire une solution intégrée, ce qui nous a permis de prouver la viabilité de cette approche.

Défis et opportunités

La création de bâtiments plus sûrs nécessite un changement des mentalités en profondeur. Du côté des clients, la décision d’achat ne devra plus se fonder sur le seul coût des composants, mais aussi intégrer le coût total de possession (TCO ou cost-of-ownership) englobant la gestion des risques d’incendie.

Le secteur doit également encourager la collaboration entre les partenaires clés, pour que l’ensemble des parties prenantes y trouvent leur compte, au-delà de la certification et des normes de performance, avec une participation active des organismes d’assurance.

Dans les années à venir, les nouvelles offres devront adopter une approche axée sur les solutions, afin d’insister sur la valeur ajoutée pour les clients, notamment une meilleure protection contre les incendies, la sécurité et la facilité d’installation.

En outre, les approches intégrées des systèmes de sécurité incendie pour les composants électriques sont en phase avec l’évolution du secteur, avec la modélisation des données du bâtiment (BIM), les jumeaux numériques et les technologies IoT.

Franck Gyppaz

Auteur

Franck Gyppaz est responsable du laboratoire de conception de systèmes de sécurité incendie à AmpaCity, le pôle d’innovation de Nexans. Il travaille dans l’industrie du câble depuis plus de 20 ans, s’impliquant dans le domaine de la sécurité incendie et développant des technologies innovantes, des conceptions de câbles et un laboratoire de test incendie avec l’accréditation ISO17025 et la certification UL. Il est également actif dans le domaine de la normalisation, membre de différents groupes au niveau national et international.Sa position l’amène à gérer les relations avec tous les acteurs de l’écosystème de la sécurité incendie pour proposer des systèmes intégrés à nos clients.

L’industrie du bâtiment transformée grâce à
l’impression 3D et la construction modulaire
Électrification de demain
27 juin 2023
10 min
3D printing & modular wiring in buildings

Le secteur du bâtiment et de la construction s’appuie de plus en plus sur les nouvelles technologies et solutions pour répondre à ses différents impératifs : une demande croissante de surface au sol, des normes de plus en plus strictes en matière de durabilité et de sécurité, la hausse des coûts et la pénurie de main-d’œuvre qualifiée.

La demande de bâtiments résidentiels, commerciaux, industriels et de haute sécurité étant amenée à augmenter dans les années à venir, des méthodes de construction plus efficaces seront nécessaires. Aujourd’hui, le secteur se tourne entre autres vers l’impression 3D, les drones, la robotique et la construction modulaire.

Au cœur de cette évolution du secteur du bâtiment et de la construction se trouve la demande croissante en électricité, qui devrait augmenter de 20 % d’ici à 2030. Les constructions futures devront tenir compte de cette évolution, qui se traduira par un plus grand nombre de câbles électriques, de connecteurs, de systèmes et de sous-systèmes, mais aussi d’installations et d’opérations plus intelligentes et plus sûres.

L’impression 3D, bientôt incontournable ?

L’impression 3D, qui était encore récemment une source de curiosité, est aujourd’hui un outil crédible dans le secteur de la construction. Également connue sous le nom de « fabrication additive », cette technologie est en passe de transformer le secteur, en réduisant considérablement les délais et les coûts de construction. D’autant que les avantages de l’impression 3D ne se limitent pas à la construction sur site, mais permettent aussi de préfabriquer des éléments de construction hors site : une autre application majeure, qui renforce encore son attrait.

L’une des initiatives phares dans ce domaine est la Dubai 3D Printing Strategy, qui prône l’impression 3D pour un quart des bâtiments de Dubaï d’ici 2030. Citons par exemple le complexe de bureaux de 250 mètres carrés abritant le siège de la Dubai Future Foundation (DFF) et la municipalité de Dubaï, réalisé par la société de construction robotique Apis Cor.

Les avantages de l’impression 3D dans le secteur de la construction ont été mis en évidence lors de la conférence Construction Technology ConFex de 2023 :

  • Rapidité et efficacité : le processus de fabrication additive couche par couche de l’impression 3D peut réduire considérablement le temps de construction par rapport aux approches classique, permettant d’achever les projets plus rapidement.
  • Réduction des coûts : en optimisant l’utilisation des matériaux et en réduisant les besoins en main-d’œuvre, l’impression 3D permet de réduire les coûts de construction.
  • Personnalisation : l’impression 3D permet de créer des designs personnalisés et des éléments architecturaux complexes et uniques, difficiles à réaliser avec des méthodes de construction classiques, qui permettent aux architectes et aux concepteurs d’explorer des possibilités de conception innovantes.
  • Construction durable : la fabrication additive permet d’utiliser uniquement la quantité de matériaux nécessaire, et donc de limiter le gaspillage, pour plus de durabilité dans la construction.

Toutefois, certains défis restent à relever :

  • Limites en matière d’échelle et de dimensions : la mise à l’échelle de l’impression 3D pour des bâtiments ou infrastructures de grande dimension reste une difficulté. Les technologies actuelles ne peuvent pas toujours produire efficacement des structures au-delà d’une certaine taille.
  • Intégrité structurelle et assurance qualité : il est essentiel de garantir l’intégrité structurelle et la durabilité à long terme des composants imprimés en 3D. Des tests rigoureux et des processus d’assurance qualité sont nécessaires pour répondre aux normes de sécurité.
  • L’intégration de systèmes électriques et d’autres services dans des structures imprimées en 3D nécessite une planification et une coordination minutieuses pour garantir un bon fonctionnement.
  • Considérations réglementaires et juridiques : à mesure que l’impression 3D se généralise dans la construction, des cadres réglementaires et des normes juridiques doivent être établis pour répondre aux exigences en matière de sécurité, de responsabilité et de conformité.

Robots et drones : de nouveaux paradigmes pour les chantiers de construction

La technologie des robots de construction est passée de la science-fiction à la réalité en un temps record. Un rapport de MarketsandMarkets prévoit que le marché des robots de construction atteindra 166,4 millions de dollars d’ici 2023, soit un taux de croissance annuel composé de 16,8 % entre 2018 et 2023. Selon un rapport IDC publié en janvier 2020, la demande de robots de construction augmentera d’environ 25 % par an jusqu’en 2023.

Les robots offrent de nombreuses possibilités : ils peuvent poser des briques, souder, actionner des pelleteuses. Les drones autopilotés sont capables de parcourir et de cartographier les chantiers de construction et d’en surveiller l’avancement. Il est communément admis que les robots dispenseront les ouvriers d’effectuer certaines tâches répétitives et dangereuses, tout en aidant le secteur à relever les défis de la productivité et de la pénurie de main-d’œuvre.

Un exemple : le robot de chantier semi-autonome Jaibot de Hilti. Conçu pour aider les entrepreneurs en mécanique, électricité et plomberie (MEP), Jaibot utilise les données BIM pour localiser et percer des trous pour les installations d’électricité et de plomberie en intérieur.

Certaines technologies, qui n’avaient pas été immédiatement adoptées par le secteur de la construction ces deux dernières années, ont maintenant trouvé leur place. D’un objet de curiosité, elles sont devenues un outil crédible.

Le câblage modulaire transforme le paysage électrique

Le câblage modulaire, dont les origines remontent au milieu des années 1990, révolutionne le paysage électrique en proposant une technologie plug-and-play au lieu des méthodes d’installation classiques. Il s’agit d’une solution à la fois rapide, sûre et facile pour connecter les circuits depuis le tableau électrique jusqu’au point de connexion final. Le câblage modulaire, initialement utilisé dans les bâtiments de haute sécurité tels que les établissements de santé, est aujourd’hui largement utilisé dans les écoles et les bâtiments publics, où il apporte des solutions à la pénurie de main-d’œuvre et aux impératifs réglementaires.

Au cours des 30 dernières années, le câblage modulaire a gagné en popularité pour devenir une alternative rentable et pratique aux installations électriques classiques. Il offre de nombreux avantages tout au long du processus de construction, depuis la conception et l’exploitation, jusqu’à la fin de vie. Les gouvernements, les constructeurs et les entrepreneurs en électricité ont progressivement acquis une certaine confiance dans la sécurité, la rentabilité et l’efficacité du câblage modulaire, tant dans le cadre des nouvelles constructions que des rénovations.

Pour répondre à la demande croissante de surface au sol, les architectes et les constructeurs s’appuient de plus en plus sur les techniques de la construction modulaire. Selon une étude récente de MarketsandMarkets, le marché mondial de la construction modulaire devrait passer de 91 milliards de dollars en 2022 à 120,4 milliards de dollars en 2027, soit une augmentation de 5,7 % entre 2022 et 2027.

Cette tendance est motivée par le besoin d’approches innovantes et la pénurie constante de main-d’œuvre qualifiée. Le câblage modulaire, au même titre que d’autres sous-ensembles et composants, peut contribuer à améliorer la productivité et les performances, tout en offrant une vision globale des coûts, y compris pour la fin de vie, les déchets et la sécurité. À mesure que le secteur s’oriente vers la préfabrication et la construction hors site, le câblage modulaire progresse, apportant des réponses aux exigences gouvernementales, aux impératifs de réduction des coûts, aux questions de qualité et de sécurité, tout en réduisant les effets sur l’environnement.

Câbler l’avenir

Les plus grands défis pour le secteur, à l’avenir, seront le changement des mentalités face aux nouvelles technologies et méthodes de construction, ainsi que l’apparition de critères de mesures plus complets.

Dans ce nouveau contexte, les câbles électriques ne devraient pas être considérés comme une simple marchandise et, à ce titre, être sélectionnés sur d’autres critères que leur seul prix, comme leur modèle, leurs matériaux, leur niveau de sécurité, etc. Ce changement de système de mesure prend en compte la performance, le risque et la durabilité comme des critères essentiels dans l’évaluation globale d’un projet de construction.

En Océanie, Nexans accompagne ses clients dans leur démarche de transition énergétique en leur proposant une solution complète de câblage modulaire. Il s’agit d’une solution efficace et durable pour réduire les déchets électriques sur les sites et les coûts d’installation. Elle englobe également les tableaux électriques, le câblage des couloirs, le câblage intérieur et les accessoires en bout de circuit.

La gestion de l’information et la conception des bâtiments étant de plus en plus détaillées dès le stade de la conception, le câblage modulaire gagne du terrain. En outre, les difficultés de l’approvisionnement et les coûts des matériaux incitent les professionnels de l’électricité à inclure le câblage modulaire dans leurs appels d’offres et leurs phases de conception.

Les solutions de câblage modulaire sont prometteuses et devraient continuera à gagner en popularité, en raison des avantages qu’elles offrent en termes de réduction des coûts, de fiabilité, de facilité d’installation, de sécurité, de qualité et de durabilité.

 

Souvent considéré comme une industrie de commodité, le secteur de la construction n’échappe pas à la tendance des nouvelles technologies et de l’innovation. Il a aujourd’hui à sa disposition une multitude d’outils et de solutions qui révolutionnent non seulement les processus, mais aussi les méthodes de travail et la préparation des chantiers. De nombreuses innovations s’avèrent déjà indispensables pour améliorer l’organisation des chantiers, la qualité du travail et l’efficacité des équipes. Les projets sont de plus en plus souvent conçus et réalisés en un temps record.

Développement durable, sécurité accrue sur les chantiers, solutions technologiques permettant de gagner du temps et de l’argent, outils numériques pour construire des structures plus respectueuses de l’environnement… L’innovation est omniprésente dans le secteur de la construction.

Christophe Demule

Author

Christophe Demule est Directeur de l’Innovation Bâtiment chez Nexans, au sein du Département Innovation Service et Croissance. Auparavant, il a occupé le poste de vice-président de l’ingénierie pour notre Business Group Industry Solutions & Projects, mettant à profit son expérience dans le domaine de la fabrication. En 2021, il a conçu et lancé la mise en œuvre de la stratégie d’innovation dans le bâtiment avec la création de six Design Labs dans le monde. En mettant l’accent sur l’expérience utilisateur, et en y associant la méthodologie du Design Thinking, les innovations permettent de résoudre les problématiques de nos clients et apportent une valeur ajoutée à toutes les parties prenantes.